BMC Neuroscience
Effect of photobiomodulation therapy on neuronal injuries by ouabain: the regulation of Na, K-ATPase; Src; and mitogen-activated protein kinase signaling pathway
- Received: 31 May 2018
- Accepted: 8 April 2019
- Published: 26 April 2019
Abstract
Background
To determine whether photobiomodulation (PBM) rescued the disruption of Na+/Ca2+ homeostasis and mitochondrial membrane potential by ouabain; the Na, K-ATPase inhibitor. For PBM in this study, a 660 nm LED array was used at energy densities of 0.78, 1.56, 3.12, 6.24, and 9.36 J/cm2.
Results
HCN-2 neuronal cells treated with ouabain showed loss of cell polarity, disrupted cell morphology, and decreased cell viability, which were improved after PBM treatment. We found that ouabain-induced Na, K-ATPase inhibition promoted activation of downstream signaling through Src, Ras, and mitogen-activated protein kinase (MAPK), which were suppressed after PBM treatment. This provided evidence of Na, K-ATPase α-subunit inactivation and intracellular Ca2+increase. In response to ouabain, we observed activation of Src and MAPK by Na, K-ATPase, decreased mitochondrial membrane potential, and Na+-dependent Ca2+ increases, which were restored by PBM treatment.
Conclusions
This study demonstrated that Na+/K+ imbalance could be regulated by PBM treatment in neuronal cells, and we suggest that PBM is a potential therapeutic tool for Na, K-ATPase targeted neuronal diseases.
Keywords
- Photobiomodulation
- Cortical neuron
- Na, K-ATPase
- Mitochondria membrane potential
No hay comentarios:
Publicar un comentario