jueves, 26 de enero de 2017

Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)—Patient Version - National Cancer Institute

Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)—Patient Version - National Cancer Institute



National Cancer Institute

Adult Acute Lymphoblastic Leukemia Treatment (PDQ®)–Patient Version





SECTIONS



General Information About Adult Acute Lymphoblastic Leukemia

KEY POINTS

  • Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell).
  • Leukemia may affect red blood cells, white blood cells, and platelets.
  • Previous chemotherapy and exposure to radiation may increase the risk of developing ALL.
  • Signs and symptoms of adult ALL include fever, feeling tired, and easy bruising or bleeding.
  • Tests that examine the blood and bone marrow are used to detect (find) and diagnose adult ALL.
  • Certain factors affect prognosis (chance of recovery) and treatment options.

Adult acute lymphoblastic leukemia (ALL) is a type of cancer in which the bone marrow makes too many lymphocytes (a type of white blood cell).

Adult acute lymphoblastic leukemia (ALL; also called acute lymphocytic leukemia) is a cancer of the blood and bone marrow. This type of cancer usually gets worse quickly if it is not treated.
ENLARGEAnatomy of the bone; drawing shows spongy bone, red marrow, and yellow marrow. A cross section of the bone shows compact bone and blood vessels in the bone marrow. Also shown are red blood cells, white blood cells, platelets, and a blood stem cell.
Anatomy of the bone. The bone is made up of compact bone, spongy bone, and bone marrow. Compact bone makes up the outer layer of the bone. Spongy bone is found mostly at the ends of bones and contains red marrow. Bone marrow is found in the center of most bones and has many blood vessels. There are two types of bone marrow: red and yellow. Red marrow contains blood stem cells that can become red blood cells, white blood cells, or platelets. Yellow marrow is made mostly of fat.

Leukemia may affect red blood cells, white blood cells, and platelets.

Normally, the bone marrow makes blood stem cells (immature cells) that become mature blood cells over time. A blood stem cell may become a myeloid stem cell or a lymphoidstem cell.
A myeloid stem cell becomes one of three types of mature blood cells:
A lymphoid stem cell becomes a lymphoblast cell and then one of three types of lymphocytes (white blood cells):
ENLARGEBlood cell development; drawing shows the steps a blood stem cell goes through to become a red blood cell, platelet, or white blood cell. A myeloid stem cell becomes a red blood cell, a platelet, or a myeloblast, which then becomes a granulocyte (the types of granulocytes are eosinophils, basophils, and neutrophils). A lymphoid stem cell becomes a lymphoblast and then becomes a B-lymphocyte, T-lymphocyte, or natural killer cell.
Blood cell development. A blood stem cell goes through several steps to become a red blood cell, platelet, or white blood cell.
In ALL, too many stem cells become lymphoblasts, B lymphocytes, or T lymphocytes. These cells are also called leukemia cells. These leukemia cells are not able to fight infection very well. Also, as the number of leukemia cells increases in the blood and bone marrow, there is less room for healthy white blood cells, red blood cells, and platelets. This may cause infection, anemia, and easy bleeding. The cancer can also spread to the central nervous system (brain and spinal cord).
This summary is about adult acute lymphoblastic leukemia. See the following PDQsummaries for information about other types of leukemia:

Previous chemotherapy and exposure to radiation may increase the risk of developing ALL.

Anything that increases your risk of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk with your doctor if you think you may be at risk. Possible risk factors for ALL include the following:

Signs and symptoms of adult ALL include fever, feeling tired, and easy bruising or bleeding.

The early signs and symptoms of ALL may be like the flu or other common diseases. Check with your doctor if you have any of the following:
  • Weakness or feeling tired.
  • Fever or night sweats.
  • Easy bruising or bleeding.
  • Petechiae (flat, pinpoint spots under the skin, caused by bleeding).
  • Shortness of breath.
  • Weight loss or loss of appetite.
  • Pain in the bones or stomach.
  • Pain or feeling of fullness below the ribs.
  • Painless lumps in the neck, underarm, stomach, or groin.
  • Having many infections.
These and other signs and symptoms may be caused by adult acute lymphoblastic leukemia or by other conditions.

Tests that examine the blood and bone marrow are used to detect (find) and diagnose adult ALL.

The following tests and procedures may be used:
  • Physical exam and history : An exam of the body to check general signs of health, including checking for signs of disease, such as infection or anything else that seems unusual. A history of the patient's health habits and past illnesses and treatments will also be taken.
  • Complete blood count (CBC) with differential : A procedure in which a sample of blood is drawn and checked for the following:
    • The number of red blood cells and platelets.
    • The number and type of white blood cells.
    • The amount of hemoglobin (the protein that carries oxygen) in the red blood cells.
    • The portion of the blood sample made up of red blood cells.
    ENLARGEComplete blood count (CBC); left panel shows blood being drawn from a vein on the inside of the elbow using a tube attached to a syringe; right panel shows a laboratory test tube with blood cells separated into layers: plasma, white blood cells, platelets, and red blood cells.
    Complete blood count (CBC). Blood is collected by inserting a needle into a vein and allowing the blood to flow into a tube. The blood sample is sent to the laboratory and the red blood cells, white blood cells, and platelets are counted. The CBC is used to test for, diagnose, and monitor many different conditions.
  • Blood chemistry studies : A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease.
  • Peripheral blood smear : A procedure in which a sample of blood is checked for blastcells, the number and kinds of white blood cells, the number of platelets, and changes in the shape of blood cells.
  • Bone marrow aspiration and biopsy : The removal of bone marrow, blood, and a small piece of bone by inserting a hollow needle into the hipbone or breastbone. A pathologist views the bone marrow, blood, and bone under a microscope to look for abnormal cells.
    ENLARGEBone marrow aspiration and biopsy; drawing shows a patient lying face down on a table and a bone marrow needle being inserted into the hip bone. Inset shows the bone marrow needle being inserted through the skin into the bone marrow of the hip bone.
    Bone marrow aspiration and biopsy. After a small area of skin is numbed, a bone marrow needle is inserted into the patient’s hip bone. Samples of blood, bone, and bone marrow are removed for examination under a microscope.
    The following tests may be done on the samples of blood or bone marrow tissue that are removed:
    • Cytogenetic analysis: laboratory test in which the cells in a sample of blood or bone marrow are looked at under a microscope to find out if there are certain changes in the chromosomes of lymphocytes. For example, in Philadelphia chromosome –positive ALL, part of one chromosome switches places with part of another chromosome. This is called the “Philadelphia chromosome.”
      ENLARGEPhiladelphia chromosome; three-panel drawing shows a piece of chromosome 9 and a piece of chromosome 22 breaking off and trading places, creating a changed chromosome 22 called the Philadelphia chromosome. In the left panel, the drawing shows a normal chromosome 9 with the abl gene and a normal chromosome 22 with the bcr gene. In the center panel, the drawing shows chromosome 9 breaking apart in the abl gene and chromosome 22 breaking apart below the bcr gene. In the right panel, the drawing shows chromosome 9 with the piece from chromosome 22 attached and chromosome 22 with the piece from chromosome 9 containing part of the abl gene attached. The changed chromosome 22 with bcr-abl gene is called the Philadelphia chromosome.
      Philadelphia chromosome. A piece of chromosome 9 and a piece of chromosome 22 break off and trade places. The bcr-abl gene is formed on chromosome 22 where the piece of chromosome 9 attaches. The changed chromosome 22 is called the Philadelphia chromosome.
    • Immunophenotyping : A process used to identify cells, based on the types of antigens or markers on the surface of the cell. This process is used to diagnose the subtype of ALL by comparing the cancer cells to normal cells of the immune system. For example, a cytochemistry study may test the cells in a sample of tissue using chemicals (dyes) to look for certain changes in the sample. A chemical may cause a color change in one type of leukemia cell but not in another type of leukemia cell.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis (chance of recovery) and treatment options depend on the following:
  • The age of the patient.
  • Whether the cancer has spread to the brain or spinal cord.
  • Whether there are certain changes in the genes, including the Philadelphia chromosome.
  • Whether the cancer has been treated before or has recurred (come back).

No hay comentarios:

Publicar un comentario