viernes, 6 de agosto de 2010

Cell - Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors


Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors

Cell, Volume 142, Issue 3, 375-386, 6 August 2010
Copyright 2010 Elsevier Inc. All rights reserved.
10.1016/j.cell.2010.07.002

Referred to by: Getting to the Heart of the Matter: Dire...

Authors
Masaki Ieda, Ji-Dong Fu, Paul Delgado-Olguin, Vasanth Vedantham, Yohei Hayashi, Benoit G. Bruneau, Deepak SrivastavaSee AffiliationsHint: Rollover Authors and Affiliations Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, San Francisco, CA 94158, USA Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94158, USA Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA Department of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA Corresponding author Present address: Departments of Cardiology and of Clinical and Molecular Cardiovascular Research, Keio University School of Medicine, Shinanomachi 35, Shinjuku-ku, Tokyo 160-8582, Japan

Highlights
•Gata4/Mef2c/Tbx5 directly reprogram fibroblasts into cardiomyocyte-like cells
•Induced cardiomyocytes (iCMs) have spontaneous contraction and action potentials
•iCMs resemble cardiomyocytes in their global gene expression and epigenetic state
•Transplanted cardiac fibroblasts can be reprogrammed into iCMs in vivo

Summary
The reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs) raises the possibility that a somatic cell could be reprogrammed to an alternative differentiated fate without first becoming a stem/progenitor cell. A large pool of fibroblasts exists in the postnatal heart, yet no single master regulator of direct cardiac reprogramming has been identified. Here, we report that a combination of three developmental transcription factors (i.e., Gata4, Mef2c, and Tbx5) rapidly and efficiently reprogrammed postnatal cardiac or dermal fibroblasts directly into differentiated cardiomyocyte-like cells. Induced cardiomyocytes expressed cardiac-specific markers, had a global gene expression profile similar to cardiomyocytes, and contracted spontaneously. Fibroblasts transplanted into mouse hearts one day after transduction of the three factors also differentiated into cardiomyocyte-like cells. We believe these findings demonstrate that functional cardiomyocytes can be directly reprogrammed from differentiated somatic cells by defined factors. Reprogramming of endogenous or explanted fibroblasts might provide a source of cardiomyocytes for regenerative approaches.

10.1016/j.cell.2010.07.002
-1Murine cardiospheres are not a source of stem cells with cardiomyogenic potential.
Andersen, D.C., Andersen, P., Schneider, M., Jensen, H.B., and Sheikh, S.P. (2009)
Stem Cells
27, 15711581. View at PubMedView at PublisherIn vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells.
Baeyens, L., De Breuck, S., Lardon, J., Mfopou, J.K., Rooman, I., and Bouwens, L. (2005)
Diabetologia
48, 4957. View at PubMedView at PublisherCardiac fibroblasts: friend or foe?.
Baudino, T.A., Carver, W., Giles, W., and Borg, T.K. (2006)
Am. J. Physiol. Heart Circ. Physiol.
291, H1015H1026. View at PubMedView at PublisherAdult cardiac stem cells are multipotent and support myocardial regeneration.
Beltrami, A.P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., and Urbanek, K., et al. (2003)
Cell
114, 763776. View at PubMedView at PublisherA bivalent chromatin structure marks key developmental genes in embryonic stem cells.
Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., and Plath, K., et al. (2006)
Cell
125, 315326. View at PubMedView at PublisherA murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease.
Bruneau, B.G., Nemer, G., Schmitt, J.P., Charron, F., Robitaille, L., Caron, S., Conner, D.A., Gessler, M., Nemer, M., and Seidman, C.E., et al. (2001)
Cell
106, 709721. View at PubMedView at PublisherStructural and functional characterisation of cardiac fibroblasts.
Camelliti, P., Borg, T.K., and Kohl, P. (2005)
Cardiovasc. Res.
65, 4051. View at PubMedView at PublisherOpening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4.
Cirillo, L.A., Lin, F.R., Cuesta, I., Friedman, D., Jarnik, M., and Zaret, K.S. (2002)
Mol. Cell
9, 279289. View at PubMedView at PublisherMesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling.
David, R., Brenner, C., Stieber, J., Schwarz, F., Brunner, S., Vollmer, M., Mentele, E., Muller-Hocker, J., Kitajima, S., and Lickert, H., et al. (2008)
Nat. Cell Biol.
10, 338345. View at PubMedView at PublisherValidation of the cardiosphere method to culture cardiac progenitor cells from myocardial tissue.
Davis, D.R., Zhang, Y., Smith, R.R., Cheng, K., Terrovitis, J., Malliaras, K., Li, T.S., White, A., Makkar, R., and Marban, E. (2009)
PLoS ONE
4, e7195. View at PubMedExpression of a single transfected cDNA converts fibroblasts to myoblasts.
Davis, R.L., Weintraub, H., and Lassar, A.B. (1987)
Cell
51, 9871000. View at PubMedView at PublisherGATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5.
Garg, V., Kathiriya, I.S., Barnes, R., Schluterman, M.K., King, I.N., Butler, C.A., Rothrock, C.R., Eapen, R.S., Hirayama-Yamada, K., and Joo, K., et al. (2003)
Nature
424, 443447. View at PubMedView at PublisherPhysical interaction between TBX5 and MEF2C is required for early heart development.
Ghosh, T.K., Song, F.F., Packham, E.A., Buxton, S., Robinson, T.E., Ronksley, J., Self, T., Bonser, A.J., and Brook, J.D. (2009)
Mol. Cell. Biol.
29, 22052218. View at PubMedView at PublisherIsolation and characterization of the mouse cardiac myosin heavy chain genes.
Gulick, J., Subramaniam, A., Neumann, J., and Robbins, J. (1991)
J. Biol. Chem.
266, 91809185. View at PubMedSuppression of induced pluripotent stem cell generation by the p53-p21 pathway.
Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., Okita, K., and Yamanaka, S. (2009)
Nature
460, 11321135. View at PubMedView at PublisherThy-1 expression by cardiac fibroblasts: lack of association with myofibroblast contractile markers.
Hudon-David, F., Bouzeghrane, F., Couture, P., and Thibault, G. (2007)
J. Mol. Cell. Cardiol.
42, 9911000. View at PubMedView at PublisherSema3a maintains normal heart rhythm through sympathetic innervation patterning.
Ieda, M., Kanazawa, H., Kimura, K., Hattori, F., Ieda, Y., Taniguchi, M., Lee, J.K., Matsumura, K., Tomita, Y., and Miyoshi, S., et al. (2007)
Nat. Med.
13, 604612. View at PubMedView at PublisherCardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling.
Ieda, M., Tsuchihashi, T., Ivey, K.N., Ross, R.S., Hong, T.T., Shaw, R.M., and Srivastava, D. (2009)
Dev. Cell
16, 233244. View at PubMedView at PublisherThe paradoxical patent ductus arteriosus.
Ivey, K.N., and Srivastava, D. (2006)
J. Clin. Invest.
116, 28632865. View at PubMedView at PublisherMultipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages.
Kattman, S.J., Huber, T.L., and Keller, G.M. (2006)
Dev. Cell
11, 723732. View at PubMedView at PublisherRetrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics.
Kitamura, T., Koshino, Y., Shibata, F., Oki, T., Nakajima, H., Nosaka, T., and Kumagai, H. (2003)
Exp. Hematol.
31, 10071014. View at PubMedView at PublisherCardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts.
Laflamme, M.A., Chen, K.Y., Naumova, A.V., Muskheli, V., Fugate, J.A., Dupras, S.K., Reinecke, H., Xu, C., Hassanipour, M., and Police, S., et al. (2007)
Nat. Biotechnol.
25, 10151024. View at PubMedView at PublisherPostnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages.
Laugwitz, K.L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., Lin, L.Z., Cai, C.L., Lu, M.M., and Reth, M., et al. (2005)
Nature
433, 647653. View at PubMedView at PublisherThe role of chromatin during transcription.
Li, B., Carey, M., and Workman, J.L. (2007)
Cell
128, 707719. View at PubMedView at PublisherControl of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C.
Lin, Q., Schwarz, J., Bucana, C., and Olson, E.N. (1997)
Science
276, 14041407. View at PubMedView at PublisherTransplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response.
Nussbaum, J., Minami, E., Laflamme, M.A., Virag, J.A., Ware, C.B., Masino, A., Muskheli, V., Pabon, L., Reinecke, H., and Murry, C.E. (2007)
FASEB J.
21, 13451357. View at PubMedView at PublisherGene regulatory networks in the evolution and development of the heart.
Olson, E.N. (2006)
Science
313, 19221927. View at PubMedView at PublisherMesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube.
Saga, Y., Miyagawa-Tomita, S., Takagi, A., Kitajima, S., Miyazaki, J., and Inoue, T. (1999)
Development
126, 34373447. View at PubMedOrigin of cardiac fibroblasts and the role of periostin.
Snider, P., Standley, K.N., Wang, J., Azhar, M., Doetschman, T., and Conway, S.J. (2009)
Circ. Res.
105, 934947. View at PubMedView at PublisherCre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus.
Srinivas, S., Watanabe, T., Lin, C.S., William, C.M., Tanabe, Y., Jessell, T.M., and Costantini, F. (2001)
BMC Dev. Biol.
1, 4. View at PubMedView at PublisherMaking or breaking the heart: from lineage determination to morphogenesis.
Srivastava, D. (2006)
Cell
126, 10371048. View at PubMedView at PublisherInduction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.
Takahashi, K., and Yamanaka, S. (2006)
Cell
126, 663676. View at PubMedView at PublisherDirected transdifferentiation of mouse mesoderm to heart tissue by defined factors.
Takeuchi, J.K., and Bruneau, B.G. (2009)
Nature
459, 708711. View at PubMedView at PublisherHuman embryonic stem cell-derived cardiomyocytes and cardiac repair in rodents.
van Laake, L.W., Passier, R., Doevendans, P.A., and Mummery, C.L. (2008)
Circ. Res.
102, 10081010. View at PubMedView at PublisherDirect conversion of fibroblasts to functional neurons by defined factors.
Vierbuchen, T., Ostermeier, A., Pang, Z.P., Kokubu, Y., Sudhof, T.C., and Wernig, M. (2010)
Nature
463, 10351041. View at PubMedView at PublisherFunctional cardiomyocytes derived from human induced pluripotent stem cells.
Zhang, J., Wilson, G.F., Soerens, A.G., Koonce, C.H., Yu, J., Palecek, S.P., Thomson, J.A., and Kamp, T.J. (2009)
Circ. Res.
104, e30e41. View at PubMedView at PublisherLoss of both GATA4 and GATA6 blocks cardiac myocyte differentiation and results in acardia in mice.
Zhao, R., Watt, A.J., Battle, M.A., Li, J., Bondow, B.J., and Duncan, S.A. (2008)
Dev. Biol.
317, 614619. View at PubMedView at PublisherIn vivo reprogramming of adult pancreatic exocrine cells to beta-cells.
Zhou, Q., Brown, J., Kanarek, A., Rajagopal, J., and Melton, D.A. (2008)
Nature
455, 627632. View at PubMedView at PublisherIeda, M., Kanazawa, H., Kimura, K., Hattori, F., Ieda, Y., Taniguchi, M., Lee, J.K., Matsumura, K., Tomita, Y., Miyoshi, S., et al. (2007). Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat. Med. 13, 604612.
Ieda, M., Tsuchihashi, T., Ivey, K.N., Ross, R.S., Hong, T.T., Shaw, R.M., and Srivastava, D. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev. Cell 16, 233244.
Smyth, G.K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article 3.



open here please:
Cell - Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors



CARDIOLOGÍA
Hallan un nuevo método más eficaz de regenerar las células del miocardio
JANO.es y agencias · 06 Agosto 2010 09:54

La nueva técnica evita la muerte del músculo cardíaco mediante tres moléculas capaces de transformar fibroblastos en cardiomiocitos.


Una investigación llevada a cabo por la Universidad de California, Estados Unidos, ha hallado una nueva manera, más eficaz que las anteriores, de evitar la muerte del músculo cardíaco mediante tres moléculas que pueden ser capaces de transformar fibroblastos en células del miocardio. La investigación ha sido publicada en Cell.

El doctor Deepak Srivastava, uno de los investigadores, explicó que para la realización del estudio se inspiraron en el sistema de regeneración de fibroblastos por medio de células madre pluripotentes (iPS), centrándose en hallar el modo de regenerarlos sin necesidad de las células madre.

La investigación se inició con 14 factores cuyo papel en el desarrollo cardíaco ya era conocido. "Esta combinación mostró pequeños, pero seguros signos de que funcionaban", comentó el científico. Entonces, fueron reduciendo los factores, eliminando uno a uno hasta quedarse con los tres que resultaron ser eficientes para la regeneración.

Un 20% más de regeneración
A diferencia de la reprogramación iPS, con ésta se ha conseguido "regenerar un 20% de fibroblastos en cardiomiocitos", afirmó Srivastava. "Este resultado es bastante superior comparado con la combinación de iPS, que lograba transformar con éxito apenas un 0,1%", subrayó.

Según explicó, la regeneración se produce durante tres días, tras esto, durante varias semanas, las células comienzan a latir al igual que las células cardíacas, mientras van adoptando las características del miocardio de forma gradual.

Cuando los fibroblastos tratados con esta combinación se trasplantan a los corazones, al día siguiente, todavía se pueden diferenciar del músculo cardíaco original, lo que ha animado a los investigadores a pensar que las células situadas en el corazón puede ser reprogramadas sin necesidad de sacarlas fuera.

El modo actual de reparar el músculo cardíaco consiste en la inserción de tres genes que codifican los factores de transcripción en células cardíacas mediante un virus. Strivastava avanzó que el objetivo de sus próximas investigaciones es "poder reemplazar este método usando únicamente moléculas u otras proteínas, colocándolas mediante un stent en el corazón, que dirigiese el crecimiento de un nuevo músculo cardíaco".

Ahora, Strivastava explicó que la investigación se centrará en "la búsqueda de moléculas que puedan mimetizar los efectos de esta nueva combinación y pueda desarrollarse fármacos de regeneración cardíaca".


Cell, Volume 142, Issue 3, 375-386, 6 August 2010; doi: 10.1016/j.cell.2010.07.002
http://www.cell.com/abstract/S0092-8674(10)00771-3

Cell
http://www.cell.com/home

Universidad de California
http://www.ucsf.edu/

Actualidad Ultimas noticias - JANOes y agencias - Hallan un nuevo metodo mas eficaz de regenerar las celulas del miocardio - JANO.es - ELSEVIER

No hay comentarios:

Publicar un comentario