Aporte a la rutina de la trinchera asistencial donde los conocimientos se funden con las demandas de los pacientes, sus necesidades y las esperanzas de permanecer en la gracia de la SALUD.
viernes, 6 de agosto de 2010
Cell - A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response
Referred to by: Noncoding RNAs: The Missing “Linc” in p5...
Authors Maite Huarte, Mitchell Guttman, David Feldser, Manuel Garber, Magdalena J. Koziol, Daniela Kenzelmann-Broz, Ahmad M. Khalil, Or Zuk, Ido Amit, Michal Rabani, Laura D. Attardi, Aviv Regev, Eric S. Lander, Tyler Jacks, John L. RinnSee AffiliationsHint: Rollover Authors and Affiliations The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA The Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA Department of and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA Department of Systems Biology, Harvard Medical School, Boston, MA 02114, USA Corresponding author
Highlights •Several lincRNAs are regulated by p53 •LincRNA-p21 is a bona fide p53 transcriptional target •LincRNA-p21 mediates global gene repression and apoptosis in the p53 pathway •LincRNA-p21 represses gene targets through physical association with hnRNP-K
Summary Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.
10.1016/j.cell.2010.06.040 -1Radiation-induced cell cycle arrest compromised by p21 deficiency. Brugarolas, J., Chandrasekaran, C., Gordon, J.I., Beach, D., Jacks, T., and Hannon, G.J. (1995) Nature 377, 552557. View at PubMedView at PublisherNon-coding RNA transcription: turning on neighbours. Carninci, P. (2008) Nat. Cell Biol. 10, 10231024. View at PubMedView at PublisherThe product of the murine homolog of the Drosophila extra sex combs gene displays transcriptional repressor activity. Denisenko, O.N., and Bomsztyk, K. (1997) Mol. Cell. Biol. 17, 47074717. View at PubMedDefinition of a consensus binding site for p53. el-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W., and Vogelstein, B. (1992) Nat. Genet. 1, 4549. View at PubMedView at PublisherA transcriptionally active DNA-binding site for human p53 protein complexes. Funk, W.D., Pak, D.T., Karas, R.H., Wright, W.E., and Shay, J.W. (1992) Mol. Cell. Biol. 12, 28662871. View at PubMedIdentifying novel constrained elements by exploiting biased substitution patterns. Garber, M., Guttman, M., Clamp, M., Zody, M.C., Friedman, N., and Xie, X. (2009) Bioinformatics 25, i54i62. View at PubMedChromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., and Cassady, J.P., et al. (2009) Nature 458, 223227. View at PubMedView at PublisherVienna RNA secondary structure server. Hofacker, I.L. (2003) Nucleic Acids Res. 31, 34293431. View at PubMedView at PublisherMany human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B.E., and van Oudenaarden, A., et al. (2009) Proc. Natl. Acad. Sci. USA 106, 1166711672. View at PubMedView at PublisherIsolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. Kim, K., Choi, J., Heo, K., Kim, H., Levens, D., Kohno, K., Johnson, E.M., Brock, H.W., and An, W. (2008) J. Biol. Chem. 283, 91139126. View at PubMedWild-type p53 is a cell cycle checkpoint determinant following irradiation. Kuerbitz, S.J., Plunkett, B.S., Walsh, W.V., and Kastan, M.B. (1992) Proc. Natl. Acad. Sci. USA 89, 74917495. View at PubMedView at PublisherThe P53 pathway: what questions remain to be explored?. Levine, A.J., Hu, W., and Feng, Z. (2006) Cell Death Differ. 13, 10271036. View at PubMedView at PublisherRepression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N., and Akoulitchev, A. (2007) Nature 445, 666670. View at PubMedView at PublisherThe genetic signatures of noncoding RNAs. Mattick, J.S. (2009) PLoS Genet. 5, e1000459. View at PubMedView at PublisherLong non-coding RNAs: insights into functions. Mercer, T.R., Dinger, M.E., and Mattick, J.S. (2009) Nat. Rev. Genet. 10, 155159. View at PubMedView at PublisherGenome-wide maps of chromatin state in pluripotent and lineage-committed cells. Mikkelsen, T.S., Ku, M., Jaffe, D.B., Issac, B., Lieberman, E., Giannoukos, G., Alvarez, P., Brockman, W., Kim, T.K., and Koche, R.P., et al. (2007) Nature 448, 553560. View at PubMedView at PublisherhnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Moumen, A., Masterson, P., O'Connor, M.J., and Jackson, S.P. (2005) Cell 123, 10651078. View at PubMedView at PublisherThe Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Nagano, T., Mitchell, J.A., Sanz, L.A., Pauler, F.M., Ferguson-Smith, A.C., Feil, R., and Fraser, P. (2008) Science 322, 17171720. View at PubMedView at PublisherKcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Pandey, R.R., Mondal, T., Mohammad, F., Enroth, S., Redrup, L., Komorowski, J., Nagano, T., Mancini-Dinardo, D., and Kanduri, C. (2008) Mol. Cell 32, 232246. View at PubMedView at PublisherFunctionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Ponjavic, J., Ponting, C.P., and Lunter, G. (2007) Genome Res. 17, 556565. View at PubMedView at PublisherEvolution and functions of long noncoding RNAs. Ponting, C.P., Oliver, P.L., and Reik, W. (2009) Cell 136, 629641. View at PubMedView at PublisherTranscriptional control of human p53-regulated genes. Riley, T., Sontag, E., Chen, P., and Levine, A. (2008) Nat. Rev. Mol. Cell Biol. 9, 402412. View at PubMedView at PublisherFunctional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E., et al. (2007) Cell 129, 13111323. View at PubMedView at PublisherRevolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Schaefer, B.C. (1995) Anal. Biochem. 227, 255273. View at PubMedView at PublisherA strategy for identifying gel-separated proteins in sequence databases by MS alone. Shevchenko, A., Wilm, M., Vorm, O., Jensen, O.N., Podtelejnikov, A.V., Neubauer, G., Shevchenko, A., Mortensen, P., and Mann, M. (1996) Biochem. Soc. Trans. 24, 893896. View at PubMedGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., et al. (2005) Proc. Natl. Acad. Sci. USA 102, 1554515550. View at PubMedView at PublisherCLIP: a method for identifying protein-RNA interaction sites in living cells. Ule, J., Jensen, K., Mele, A., and Darnell, R.B. (2005) Methods 37, 376386. View at PubMedView at PublisherA novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. van Engeland, M., Ramaekers, F.C., Schutte, B., and Reutelingsperger, C.P. (1996) Cytometry 24, 131139. View at PubMedThe genetics of the p53 pathway, apoptosis and cancer therapy. Vazquez, A., Bond, E.E., Levine, A.J., and Bond, G.L. (2008) Nat. Rev. Drug Discov. 7, 979987. View at PubMedView at PublisherRestoration of p53 function leads to tumour regression in vivo. Ventura, A., Kirsch, D.G., McLaughlin, M.E., Tuveson, D.A., Grimm, J., Lintault, L., Newman, J., Reczek, E.E., Weissleder, R., and Jacks, T. (2007) Nature 445, 661665. View at PubMedView at PublisherA global map of p53 transcription-factor binding sites in the human genome. Wei, C.L., Wu, Q., Vega, V.B., Chiu, K.P., Ng, P., Zhang, T., Shahab, A., Yong, H.C., Fu, Y., and Weng, Z., et al. (2006) Cell 124, 207219. View at PubMedView at PublisherPolycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.J., and Lee, J.T. (2008) Science 322, 750756. View at PubMedGarber, M., Guttman, M., Clamp, M., Zody, M.C., Friedman, N., and Xie, X. (2009). Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 25, i54i62. Grant, G.R., Liu, J., and Stoeckert, C.J., Jr. (2005). A practical false discovery rate approach to identifying patterns of differential expression in microarray data. Bioinformatics 21, 26842690. Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., Cassady, J.P., et al. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223227. Hofacker, I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Res. 31, 34293431. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., and Mesirov, J.P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 1554515550.
ver historia personal en: www.cerasale.com.ar [dado de baja por la Cancillería Argentina por temas políticos, propio de la censura que rige en nuestro medio]//
www.revistamedicos.com.ar //
www.quorumtuc.com.ar //
www.sectorsalud.com.ar //
www.maimonides.edu //
weblog.maimonides.edu/farmacia/archives/UM_Informe_Autoevaluacion_FyB.pdf - //
weblog.maimonides.edu/farmacia/archives/0216_Admin_FarmEcon.pdf - //
www.documentalistas.org.ar //
www.cpcesfe2.org.ar //
www.nogracias.eu //
www.estenssorome.com.ar //
www.cuautitlan.unam.mx/descargas/licenciaturas/bqd/plandestudio_bqd_ //
www.latamjpharm.org/trabajos/25/2/LAJOP_25_2_6_1_M4M6Z9746D.pdf //
www.nogracias.eu/v_juventud/informacion/informacionver.asp?cod= //
www.colfarse.com.ar //
www.proz.com/kudoz/english_to_spanish/art_literary/523942-key_factors.html - 65k - // www.llave.connmed.com.ar/portalnoticias_vernoticia.php?codigonoticia=17715 // www.frusculleda.com.ar/homepage/espanol/activities_teaching.htm // http://www.on24.com.ar/nota.aspx?idNot=36331 ||
No hay comentarios:
Publicar un comentario