jueves, 11 de abril de 2019

Genetics of Prostate Cancer (PDQ®) 1/5 —Health Professional Version - National Cancer Institute

Genetics of Prostate Cancer (PDQ®)—Health Professional Version - National Cancer Institute

National Cancer Institute



Genetics of Prostate Cancer (PDQ®)–Health Professional Version

Executive Summary

This executive summary reviews the topics covered in this PDQ summary on the genetics of prostate cancer, with hyperlinks to detailed sections below that describe the evidence on each topic.
  • Inheritance and Risk
    A genetic contribution to prostate cancer risk has been documented, and knowledge about the molecular genetics of the disease is increasing. Clinical management based on knowledge of inherited pathogenic variants is emerging. Factors suggestive of a genetic contribution to prostate cancer include the following: 1) multiple affected first-degree relatives (FDRs) with prostate cancer, including three successive generations with prostate cancer in the maternal or paternal lineage; 2) early-onset prostate cancer (age ≤55 y); and 3) prostate cancer with a family history of other cancers (e.g., breast, ovarian, pancreatic).
  • Associated Genes and Single-Nucleotide Polymorphisms (SNPs)
    Several genes and chromosomal regions have been found to be associated with prostate cancer in various linkage analysescase-control studiesgenome-wide association studies (GWAS), and admixture mapping studies. Pathogenic variants in genes of high and moderate penetrance, such as BRCA1BRCA2, the mismatch repair genes, and HOXB13 confer modest to high lifetime risk of prostate cancer. Some, such as BRCA2, have emerging clinical relevance in the treatment and screening for prostate cancer. In addition, GWAS have identified more than 100 SNPs associated with the development of prostate cancer, but the clinical utility of these findings remains uncertain. Studies are ongoing to assess whether combinations of these SNPs may have clinical relevance in identifying individuals at increased risk of the disease. Studies analyzing the association between variants and aggressive disease are also ongoing.
  • Clinical Management
    Information is limited about the efficacy of commonly available screening tests such as the digital rectal exam and serum prostate-specific antigen (PSA) levels in men genetically predisposed to developing prostate cancer. Initial reports of targeted PSA screening of carriers of BRCA pathogenic variants has yielded a higher proportion of aggressive disease. On the basis of the available data, most professional societies and organizations recommend that high-risk men engage in shared decision-making with their health care providers and develop individualized plans for prostate cancer screening based on their risk factors. For example, some experts suggest initiating prostate cancer screening at age 45 years in carriers of BRCA2 pathogenic variants and consideration of screening in BRCA1 carriers. Inherited variants may influence treatment decisions, particularly for males with pathogenic variants in DNA repair genes. Studies have reported improved response rates to poly (ADP-ribose) polymerase (PARP) inhibition among males with metastatic, castrate-resistant prostate cancer carrying germline pathogenic variants in BRCA2 and other DNA repair genes.
  • Psychosocial and Behavioral Issues
    Psychosocial research in men at increased hereditary risk of prostate cancer has focused on risk perceptioninterest in genetic testing, and screening behaviors. Study conclusions vary regarding whether FDRs of prostate cancer patients accurately estimate their prostate cancer risk, with some studies reporting that men with a family history of prostate cancer consider their risk to be the same as or less than that of the average man. Factors such as being married and the confusion between benign prostatic hyperplasia and prostate cancer have been found to influence perceived risk of prostate cancer. Studies conducted before the availability of genetic testing for prostate cancer susceptibility showed that factors found to positively influence men’s hypothetical interest in genetic testing included the advice of their primary care physician, a combination of the emotional distress and concern about prostate cancer treatment effects, and having children. Several small studies have examined the behavioral correlates of prostate cancer screening at average and increased prostate cancer risk based on family history; in general, results appear contradictory regarding whether men with a family history are more likely to be screened than those not at risk and whether the screening is appropriate for their risk status. Research is ongoing to better understand and address psychosocial and behavioral issues in high-risk families.

Introduction

[Note: Many of the medical and scientific terms used in this summary are found in the NCI Dictionary of Genetics Terms. When a linked term is clicked, the definition will appear in a separate window.]
[Note: Many of the genes and conditions described in this summary are found in the Online Mendelian Inheritance in Man (OMIM) catalog. Refer to OMIM for more information.]
[Note: A concerted effort is being made within the genetics community to shift terminology used to describe genetic variation. The shift is to use the term “variant” rather than the term “mutation” to describe a difference that exists between the person or group being studied and the reference sequence. Variants can then be further classified as benign (harmless), likely benign, of uncertain significance, likely pathogenic, or pathogenic (disease causing). Throughout this summary, we will use the term pathogenic variant to describe a disease-causing mutation. Refer to the Cancer Genetics Overview summary for more information about variant classification.]
The public health burden of prostate cancer is substantial. A total of 174,650 new cases of prostate cancer and 31,620 deaths from the disease are anticipated in the United States in 2019, making it the most frequent nondermatologic cancer among U.S. males.[1] A man’s lifetime risk of prostate cancer is one in nine. Prostate cancer is the second leading cause of cancer death in men, exceeded only by lung cancer.[1]
Some men with prostate cancer remain asymptomatic and die from unrelated causes rather than as a result of the cancer itself. This may be due to the advanced age of many men at the time of diagnosis, slow tumor growth, or response to therapy.[2] The estimated number of men with latent prostate carcinoma (i.e., prostate cancer that is present in the prostate gland but never detected or diagnosed during a patient’s life) is greater than the number of men with clinically detected disease. A better understanding is needed of the genetic and biologic mechanisms that determine why some prostate carcinomas remain clinically silent, while others cause serious, even life-threatening illness.[2]
Prostate cancer exhibits tremendous differences in incidence among populations worldwide; the ratio of countries with high and low rates of prostate cancer ranges from 60-fold to 100-fold.[3] Asian men typically have a very low incidence of prostate cancer, with age-adjusted incidence rates ranging from 2 to 10 cases per 100,000 men. Higher incidence rates are generally observed in northern European countries. African American men, however, have the highest incidence of prostate cancer in the world; within the United States, African American men have a 60% higher incidence rate than white men.[4] African American men have been reported to have more than twice the rate of prostate cancer–specific death compared with non-Hispanic white men.[1] Differences in race-specific prostate cancer survival estimates may be narrowing over time.[5]
These differences may be due to the interplay of genetic, environmental, and social influences (such as access to health care), which may affect the development and progression of the disease.[6] Differences in screening practices have also had a substantial influence on prostate cancer incidence, by permitting prostate cancer to be diagnosed in some patients before symptoms develop or before abnormalities on physical examination are detectable. An analysis of population-based data from Sweden suggested that a diagnosis of prostate cancer in one brother leads to an early diagnosis in a second brother using prostate-specific antigen (PSA) screening.[7] This may account for an increase in prostate cancer diagnosed in younger men that was evident in nationwide incidence data. A genetic contribution to prostate cancer risk has been documented, and there is increasing knowledge of the molecular genetics of the disease, although much of what is known is not yet clinically actionable. Malignant transformation of prostate epithelial cells and progression of prostate carcinoma are likely to result from a complex series of initiation and promotional events under both genetic and environmental influences.[8]

Risk Factors for Prostate Cancer

The three most important recognized risk factors for prostate cancer in the United States are:

Age

Age is an important risk factor for prostate cancer. Prostate cancer is rarely seen in men younger than 40 years; the incidence rises rapidly with each decade thereafter. For example, the probability of being diagnosed with prostate cancer is 1 in 437 for men 49 years or younger, 1 in 59 for men aged 50 through 59 years, 1 in 22 for men aged 60 through 69 years, and 1 in 13 for men aged 70 years and older, with an overall lifetime risk of developing prostate cancer of 1 in 9.[1]
Approximately 10% of prostate cancer cases are diagnosed in men younger than 56 years and represent early-onset prostate cancer. Data from the Surveillance, Epidemiology, and End Results (SEER) Program show that early-onset prostate cancer is increasing, and there is evidence that some cases may be more aggressive.[9] Because early-onset cancers may result from germline pathogenic variants, young men with prostate cancer are being extensively studied with the goal of identifying prostate cancer susceptibility genes.

Ancestry

The risk of developing and dying from prostate cancer is dramatically higher among blacks, is of intermediate levels among whites, and is lowest among native Japanese.[10,11] Conflicting data have been published regarding the etiology of these outcomes, but some evidence is available that access to health care may play a role in disease outcomes.[12]

Family history of prostate cancer

Prostate cancer is highly heritable; the inherited risk of prostate cancer has been estimated to be as high as 60%.[13] As with breast and colon cancer, familial clustering of prostate cancer has been reported frequently.[14-18] From 5% to 10% of prostate cancer cases are believed to be primarily caused by high-risk inherited genetic factors or prostate cancer susceptibility genes. Results from several large case-control studies and cohort studies representing various populations suggest that family history is a major risk factor in prostate cancer.[15,19,20] A family history of a brother or father with prostate cancer increases the risk of prostate cancer, and the risk is inversely related to the age of the affected relative.[16-20] However, at least some familial aggregation is due to increased prostate cancer screening in families thought to be at high risk.[21]
Although some of the prostate cancer studies examining risks associated with family history have used hospital-based series, several studies described population-based series.[22-24] The latter are thought to provide information that is more generalizable. A meta-analysis of 33 epidemiologic case-control and cohort-based studies has provided more detailed information regarding risk ratios related to family history of prostate cancer. Risk appeared to be greater for men with affected brothers than for men with affected fathers in this meta-analysis. Although the reason for this difference in risk is unknown, possible hypotheses have included X-linked or recessive inheritance. In addition, risk increased with increasing numbers of affected close relatives. Risk also increased when a first-degree relative (FDR) was diagnosed with prostate cancer before age 65 years. (Refer to Table 1 for a summary of the relative risks [RRs] related to a family history of prostate cancer.)[25]
Table 1. Relative Risk (RR) Related to Family History of Prostate Cancera
Risk GroupRR for Prostate Cancer (95% CI)
CI = confidence interval; FDR = first-degree relative.
aAdapted from Kiciński et al.[25]
Brother(s) with prostate cancer diagnosed at any age3.14 (2.37–4.15)
Father with prostate cancer diagnosed at any age2.35 (2.02–2.72)
One affected FDR diagnosed at any age2.48 (2.25–2.74)
Affected FDRs diagnosed <65 y2.87 (2.21–3.74)
Affected FDRs diagnosed ≥65 y1.92 (1.49–2.47)
Second-degree relatives diagnosed at any age2.52 (0.99–6.46)
Two or more affected FDRs diagnosed at any age4.39 (2.61–7.39)
Among the many data sources included in this meta-analysis, those from the Swedish population-based Family-Cancer Database warrant special comment. These data were derived from a resource that contained more than 11.8 million individuals, among whom there were 26,651 men with medically verified prostate cancer, of which 5,623 were familial cases.[26] The size of this data set, with its nearly complete ascertainment of the entire Swedish population and objective verification of cancer diagnoses, should yield risk estimates that are both accurate and free of bias. When the familial age-specific hazard ratios (HRs) for prostate cancer diagnosis and mortality were computed, as expected, the HR for prostate cancer diagnosis increased with more family history. Specifically, HRs for prostate cancer were 2.12 (95% CI, 2.05–2.20) with an affected father only, 2.96 (95% CI, 2.80–3.13) with an affected brother only, and 8.51 (95% CI, 6.13–11.80) with a father and two brothers affected. The highest HR, 17.74 (95% CI, 12.26–25.67), was seen in men with three brothers diagnosed with prostate cancer. The HRs were even higher when the affected relative was diagnosed with prostate cancer before age 55 years.
A separate analysis of this Swedish database reported that the cumulative (absolute) risks of prostate cancer among men in families with two or more affected cases were 5% by age 60 years, 15% by age 70 years, and 30% by age 80 years, compared with 0.45%, 3%, and 10%, respectively, by the same ages in the general population. The risks were even higher when the affected father was diagnosed before age 70 years.[27] The corresponding familial population attributable fractions (PAFs) were 8.9%, 1.8%, and 1.0% for the same three age groups, respectively, yielding a total PAF of 11.6% (i.e., approximately 11.6% of all prostate cancers in Sweden can be accounted for on the basis of familial history of the disease).
The risk of prostate cancer may also increase in men who have a family history of breast cancer. Approximately 9.6% of the Iowa cohort had a family history of breast and/or ovarian cancer in a mother or sister at baseline, and this was positively associated with prostate cancer risk (age-adjusted RR, 1.7; 95% CI, 1.0–3.0; multivariate RR, 1.7; 95% CI, 0.9–3.2). Men with a family history of both prostate and breast/ovarian cancer were also at increased risk of prostate cancer (RR, 5.8; 95% CI, 2.4–14.0).[22] Analysis of data from the Women's Health Initiative also showed that a family history of prostate cancer was associated with an increase in the risk of postmenopausal breast cancer (adjusted HR, 1.14; 95% CI, 1.02–1.26).[28] Further analyses showed that breast cancer risk was associated with a family history of both breast and prostate cancers; the risk was higher in black women than in white women. Other studies, however, did not find an association between family history of female breast cancer and risk of prostate cancer.[22,29] A family history of prostate cancer also increases the risk of breast cancer among female relatives.[30] The association between prostate cancer and breast cancer in the same family may be explained, in part, by the increased risk of prostate cancer among men with BRCA1/BRCA2pathogenic variants in the setting of hereditary breast/ovarian cancer or early-onset prostate cancer.[31-34] (Refer to the BRCA1 and BRCA2 section of this summary for more information.)
Prostate cancer clusters with particular intensity in some families. Highly penetrant genetic variants are thought to be associated with prostate cancer risk in these families. (Refer to the Linkage Analyses section of this summary for more information.) Members of such families may benefit from genetic counseling. Emerging recommendations and guidelines for genetic counseling referrals are based on prostate cancer age at diagnosis and specific family cancer history patterns.[35,36] Individuals meeting the following criteria may warrant referral for genetic consultation:[35-38]
  • Multiple affected FDRs with prostate cancer.
  • Early-onset prostate cancer (age ≤55 y).
  • Metastatic prostate cancer.
  • Prostate cancer with a family history of other cancers (e.g., breast, ovarian, pancreatic).
Family history has been shown to be a risk factor for men of different races and ethnicities. In a population-based case-control study of prostate cancer among African Americans, whites, and Asian Americans in the United States (Los Angeles, San Francisco, and Hawaii) and Canada (Vancouver and Toronto),[39] 5% of controls and 13% of all cases reported a father, brother, or son with prostate cancer. These prevalence estimates were somewhat lower among Asian Americans than among African Americans or whites. A positive family history was associated with a twofold to threefold increase in RR in each of the three ethnic groups. The overall odds ratio associated with a family history of prostate cancer was 2.5 (95% CI, 1.9–3.3) with adjustment for age and ethnicity.[39]
There is little evidence that family history alone is associated with inferior clinical outcomes. In a cohort of 7,690 men in Germany who were undergoing radical prostatectomy for localized prostate cancer, family history had no bearing on prostate cancer–specific survival.[40]

Other potential modifiers of prostate cancer risk

Endogenous hormones, including both androgens and estrogens, likely influence prostate carcinogenesis. It has been widely reported that eunuchs and other individuals with castrate levels of testosterone before puberty do not develop prostate cancer.[41] Some investigators have considered the potential role of genetic variation in androgen biosynthesis and metabolism in prostate cancer risk,[42] including the potential role of the androgen receptor (AR) CAG repeat length in exon 1. This modulates AR activity, which may influence prostate cancer risk.[43] For example, a meta-analysis reported that AR CAG repeat length greater than or equal to 20 repeats conferred a protective effect for prostate cancer in subsets of men.[44]
(Refer to the PDQ summary on Prostate Cancer Prevention for more information about nongenetic modifiers of prostate cancer risk in the general population.)

Multiple Primaries

The SEER Cancer Registries assessed the risk of developing a second primary cancer in 292,029 men diagnosed with prostate cancer between 1973 and 2000. Excluding subsequent prostate cancer and adjusting for the risk of death from other causes, the cumulative incidence of a second primary cancer among all patients was 15.2% at 25 years (95% CI, 15.0%–15.4%). There was a significant risk of new malignancies (all cancers combined) among men diagnosed before age 50 years, no excess or deficit in cancer risk in men aged 50 to 59 years, and a deficit in cancer risk in all older age groups. The authors suggested that this deficit may be attributable to decreased cancer surveillance in an elderly population. Excess risks of second primary cancers included cancers of the small intestine, soft tissue, bladder, thyroid, and thymus; and melanoma. Prostate cancer diagnosed in patients aged 50 years or younger was associated with an excess risk of pancreatic cancer.[45]
A review of more than 441,000 men diagnosed with prostate cancer between 1992 and 2010 demonstrated similar findings, with an overall reduction in the risk of being diagnosed with a second primary cancer. This study also examined the risk of second primary cancers in 44,310 men (10%) by treatment modality for localized cancer. The study suggested that men who received radiation therapy had increases in bladder (standardized incidence ratio [SIR], 1.42) and rectal cancer risk (SIR, 1.70) compared with those who did not receive radiation therapy (SIRbladder, 0.76; SIRrectal, 0.74).[46]
The underlying etiology of developing a second primary cancer after prostate cancer may be related to various factors, including treatment modality. More than 50% of the small intestine tumors were carcinoid malignancies, suggesting possible hormonal influences. The excess of pancreatic cancer may be due to pathogenic variants in BRCA2, which predisposes to both. The risk of melanoma was most pronounced in the first year of follow-up after diagnosis, raising the possibility that this is the result of increased screening and surveillance.[45]
One Swedish study using the nationwide Swedish Family Cancer Database assessed the role of family history in the risk of a second primary cancer after prostate cancer. Of 18,207 men with prostate cancer, 560 developed a second primary malignancy. Of those, the RR was increased for colorectal, kidney, bladder, and squamous cell skin cancers. Having a paternal family history of prostate cancer was associated with an increased risk of bladder cancer, myeloma, and squamous cell skin cancer. Among prostate cancer probands, those with a family history of colorectal cancer, bladder cancer, or chronic lymphoid leukemia were at increased risk of that specific cancer as a second primary cancer.[47]
Data are emerging that prostate cancer patients who have at least one additional primary malignancy disproportionately harbor pathogenic variants in known cancer-predisposing genes, such as BRCA2 and MLH1.[48]

Risk of Other Cancers in Multiple-Case Families

Several reports have suggested an elevated risk of various other cancers among relatives within multiple-case prostate cancer families, but none of these associations have been established definitively.[49-51]
In a population-based Finnish study of 202 multiple-case prostate cancer families, no excess risk of all cancers combined (other than prostate cancer) was detected in 5,523 family members. Female family members had a marginal excess of gastric cancer (SIR, 1.9; 95% CI, 1.0–3.2). No difference in familial cancer risk was observed when families affected by clinically aggressive prostate cancers were compared with those having nonaggressive prostate cancer. These data suggest that familial prostate cancer is a cancer site–specific disorder.[52]
A study from the Swedish Family Cancer Database reported an increased risk of the following cancers in families where multiple members had a prostate cancer diagnosis: myeloma (RR, 2.44; 95% CI, 1.24–4.82), kidney cancer (RR, 2.32; 95% CI, 1.23–4.36), nonthyroid endocrine tumors (RR, 2.18; 95% CI, 1.06–4.49), melanoma (RR, 1.82; 95% CI, 1.18–2.80), nervous system tumors (RR, 1.77; 95% CI, 1.08–2.91), and female breast cancer (RR, 1.37; 95% CI, 1.02–1.86).[53] It remains to be determined whether these associations are from a common genetic basis, shared environment, or a combination of factors.

Inheritance of Prostate Cancer Risk

Many types of epidemiologic studies (case-control, cohort, twin, family) strongly suggest that prostate cancer susceptibility genes exist in the population. Analysis of longer follow-up of the monozygotic (MZ) and dizygotic (DZ) twin pairs in Scandinavia concluded that 58% (95% CI, 52%–63%) of prostate cancer risk may be accounted for by heritable factors.[13] Additionally, among affected MZ and DZ pairs, the time to diagnosis in the second twin was shortest in MZ twins (mean, 3.8 y in MZ twins vs. 6.5 y in DZ twins). This is in agreement with a previous U.S. study that showed a concordance of 7.1% between DZ twin pairs and a 27% concordance between MZ twin pairs.[54] The first segregation analysis was performed in 1992 using families from 740 consecutive probands who had radical prostatectomies between 1982 and 1989. The study results suggested that familial clustering of disease among men with early-onset prostate cancer was best explained by the presence of a rare (frequency of 0.003) autosomal dominant, highly penetrant allele(s).[15] Hereditary prostate cancer susceptibility genes were predicted to account for almost half of early-onset disease (age 55 y or younger). In addition, early-onset disease has been further supported to have a strong genetic component from the study of common variants associated with disease onset before age 55 years.[55]
Subsequent segregation analyses generally agreed with the conclusions but differed in the details regarding frequency, penetrance, and mode of inheritance.[56-58] A study of 4,288 men who underwent radical prostatectomy between 1966 and 1995 found that the best fitting genetic model of inheritance was the presence of a rare, autosomal dominant susceptibility gene (frequency of 0.06). In this study, the lifetime risk in carriers was estimated to be 89% by age 85 years and 3.9% for noncarriers.[54] This study also suggested the presence of genetic heterogeneity, as the model did not reliably predict prostate cancer risk in FDRs of probands who were diagnosed at age 70 years or older. More recent segregation analyses have concluded that there are multiple genes associated with prostate cancer [59-62] in a pattern similar to other adult-onset hereditary cancer syndromes, such as those involving the breast, ovary, colorectum, kidney, and melanoma. In addition, a segregation analysis of 1,546 families from Finland found evidence for mendelian recessive inheritance. Results showed that individuals carrying the risk allele were diagnosed with prostate cancer at younger ages (<66 y) than noncarriers. This is the first segregation analysis to show a recessive mode of inheritance.[63]
References
  1. American Cancer Society: Cancer Facts and Figures 2019. Atlanta, Ga: American Cancer Society, 2019. Available online. Last accessed January 23, 2019.
  2. Ruijter E, van de Kaa C, Miller G, et al.: Molecular genetics and epidemiology of prostate carcinoma. Endocr Rev 20 (1): 22-45, 1999. [PUBMED Abstract]
  3. Stanford JL, Stephenson RA, Coyle LM, et al., eds.: Prostate Cancer Trends 1973-1995. Bethesda, Md: National Cancer Institute, 1999. NIH Pub. No. 99-4543. Also available online. Last accessed December 14, 2018.
  4. Miller BA, Kolonel LN, Bernstein L, et al., eds.: Racial/Ethnic Patterns of Cancer in the United States 1988-1992. Bethesda, Md: National Cancer Institute, 1996. NIH Pub. No. 96-4104. Also available online. Last accessed December 14, 2018.
  5. Zeng C, Wen W, Morgans AK, et al.: Disparities by Race, Age, and Sex in the Improvement of Survival for Major Cancers: Results From the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER) Program in the United States, 1990 to 2010. JAMA Oncol 1 (1): 88-96, 2015. [PUBMED Abstract]
  6. Haas GP, Sakr WA: Epidemiology of prostate cancer. CA Cancer J Clin 47 (5): 273-87, 1997 Sep-Oct. [PUBMED Abstract]
  7. Hemminki K, Rawal R, Bermejo JL: Prostate cancer screening, changing age-specific incidence trends and implications on familial risk. Int J Cancer 113 (2): 312-5, 2005. [PUBMED Abstract]
  8. Witte JS: Prostate cancer genomics: towards a new understanding. Nat Rev Genet 10 (2): 77-82, 2009. [PUBMED Abstract]
  9. Salinas CA, Tsodikov A, Ishak-Howard M, et al.: Prostate cancer in young men: an important clinical entity. Nat Rev Urol 11 (6): 317-23, 2014. [PUBMED Abstract]
  10. Altekruse SF, Kosary CL, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2007. Bethesda, Md: National Cancer Institute, 2010. Also available online. Last accessed January 31, 2019.
  11. Bunker CH, Patrick AL, Konety BR, et al.: High prevalence of screening-detected prostate cancer among Afro-Caribbeans: the Tobago Prostate Cancer Survey. Cancer Epidemiol Biomarkers Prev 11 (8): 726-9, 2002. [PUBMED Abstract]
  12. Optenberg SA, Thompson IM, Friedrichs P, et al.: Race, treatment, and long-term survival from prostate cancer in an equal-access medical care delivery system. JAMA 274 (20): 1599-605, 1995 Nov 22-29. [PUBMED Abstract]
  13. Hjelmborg JB, Scheike T, Holst K, et al.: The heritability of prostate cancer in the Nordic Twin Study of Cancer. Cancer Epidemiol Biomarkers Prev 23 (11): 2303-10, 2014. [PUBMED Abstract]
  14. Steinberg GD, Carter BS, Beaty TH, et al.: Family history and the risk of prostate cancer. Prostate 17 (4): 337-47, 1990. [PUBMED Abstract]
  15. Carter BS, Beaty TH, Steinberg GD, et al.: Mendelian inheritance of familial prostate cancer. Proc Natl Acad Sci U S A 89 (8): 3367-71, 1992. [PUBMED Abstract]
  16. Ghadirian P, Howe GR, Hislop TG, et al.: Family history of prostate cancer: a multi-center case-control study in Canada. Int J Cancer 70 (6): 679-81, 1997. [PUBMED Abstract]
  17. Stanford JL, Ostrander EA: Familial prostate cancer. Epidemiol Rev 23 (1): 19-23, 2001. [PUBMED Abstract]
  18. Matikaine MP, Pukkala E, Schleutker J, et al.: Relatives of prostate cancer patients have an increased risk of prostate and stomach cancers: a population-based, cancer registry study in Finland. Cancer Causes Control 12 (3): 223-30, 2001. [PUBMED Abstract]
  19. Grönberg H, Damber L, Damber JE: Familial prostate cancer in Sweden. A nationwide register cohort study. Cancer 77 (1): 138-43, 1996. [PUBMED Abstract]
  20. Cannon L, Bishop DT, Skolnick M, et al.: Genetic epidemiology of prostate cancer in the Utah Mormon genealogy. Cancer Surv 1 (1): 47-69, 1982.
  21. Bratt O, Garmo H, Adolfsson J, et al.: Effects of prostate-specific antigen testing on familial prostate cancer risk estimates. J Natl Cancer Inst 102 (17): 1336-43, 2010. [PUBMED Abstract]
  22. Kalish LA, McDougal WS, McKinlay JB: Family history and the risk of prostate cancer. Urology 56 (5): 803-6, 2000. [PUBMED Abstract]
  23. Cerhan JR, Parker AS, Putnam SD, et al.: Family history and prostate cancer risk in a population-based cohort of Iowa men. Cancer Epidemiol Biomarkers Prev 8 (1): 53-60, 1999. [PUBMED Abstract]
  24. Albright F, Stephenson RA, Agarwal N, et al.: Prostate cancer risk prediction based on complete prostate cancer family history. Prostate 75 (4): 390-8, 2015. [PUBMED Abstract]
  25. Kiciński M, Vangronsveld J, Nawrot TS: An epidemiological reappraisal of the familial aggregation of prostate cancer: a meta-analysis. PLoS One 6 (10): e27130, 2011. [PUBMED Abstract]
  26. Brandt A, Bermejo JL, Sundquist J, et al.: Age-specific risk of incident prostate cancer and risk of death from prostate cancer defined by the number of affected family members. Eur Urol 58 (2): 275-80, 2010. [PUBMED Abstract]
  27. Grönberg H, Wiklund F, Damber JE: Age specific risks of familial prostate carcinoma: a basis for screening recommendations in high risk populations. Cancer 86 (3): 477-83, 1999. [PUBMED Abstract]
  28. Beebe-Dimmer JL, Yee C, Cote ML, et al.: Familial clustering of breast and prostate cancer and risk of postmenopausal breast cancer in the Women's Health Initiative Study. Cancer 121 (8): 1265-72, 2015. [PUBMED Abstract]
  29. Damber L, Grönberg H, Damber JE: Familial prostate cancer and possible associated malignancies: nation-wide register cohort study in Sweden. Int J Cancer 78 (3): 293-7, 1998. [PUBMED Abstract]
  30. Sellers TA, Potter JD, Rich SS, et al.: Familial clustering of breast and prostate cancers and risk of postmenopausal breast cancer. J Natl Cancer Inst 86 (24): 1860-5, 1994. [PUBMED Abstract]
  31. Agalliu I, Karlins E, Kwon EM, et al.: Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97 (6): 826-31, 2007. [PUBMED Abstract]
  32. Edwards SM, Kote-Jarai Z, Meitz J, et al.: Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72 (1): 1-12, 2003. [PUBMED Abstract]
  33. Ford D, Easton DF, Bishop DT, et al.: Risks of cancer in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Lancet 343 (8899): 692-5, 1994. [PUBMED Abstract]
  34. Gayther SA, de Foy KA, Harrington P, et al.: The frequency of germ-line mutations in the breast cancer predisposition genes BRCA1 and BRCA2 in familial prostate cancer. The Cancer Research Campaign/British Prostate Group United Kingdom Familial Prostate Cancer Study Collaborators. Cancer Res 60 (16): 4513-8, 2000. [PUBMED Abstract]
  35. Hampel H, Bennett RL, Buchanan A, et al.: A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med 17 (1): 70-87, 2015. [PUBMED Abstract]
  36. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast and Ovarian. Version 2.2019. Plymouth Meeting, Pa: National Comprehensive Cancer Network, 2018. Available online with free registration. Last accessed October 22, 2018.
  37. Carter BS, Bova GS, Beaty TH, et al.: Hereditary prostate cancer: epidemiologic and clinical features. J Urol 150 (3): 797-802, 1993. [PUBMED Abstract]
  38. Lindor NM, McMaster ML, Lindor CJ, et al.: Concise handbook of familial cancer susceptibility syndromes - second edition. J Natl Cancer Inst Monogr (38): 1-93, 2008. [PUBMED Abstract]
  39. Whittemore AS, Wu AH, Kolonel LN, et al.: Family history and prostate cancer risk in black, white, and Asian men in the United States and Canada. Am J Epidemiol 141 (8): 732-40, 1995. [PUBMED Abstract]
  40. Brath JM, Grill S, Ankerst DP, et al.: No Detrimental Effect of a Positive Family History on Long-Term Outcomes Following Radical Prostatectomy. J Urol 195 (2): 343-8, 2016. [PUBMED Abstract]
  41. Wu CP, Gu FL: The prostate in eunuchs. Prog Clin Biol Res 370: 249-55, 1991. [PUBMED Abstract]
  42. Ross RK, Pike MC, Coetzee GA, et al.: Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res 58 (20): 4497-504, 1998. [PUBMED Abstract]
  43. Rajender S, Singh L, Thangaraj K: Phenotypic heterogeneity of mutations in androgen receptor gene. Asian J Androl 9 (2): 147-79, 2007. [PUBMED Abstract]
  44. Gu M, Dong X, Zhang X, et al.: The CAG repeat polymorphism of androgen receptor gene and prostate cancer: a meta-analysis. Mol Biol Rep 39 (3): 2615-24, 2012. [PUBMED Abstract]
  45. McMaster ML, Feuer EJ, Tucker MA: New malignancies following cancer of the male genital tract. In: Curtis RE, Freedman DM, Ron E, et al., eds.: New Malignancies Among Cancer Survivors: SEER Cancer Registries, 1973-2000. Bethesda, Md: National Cancer Institute, 2006. NIH Pub. No. 05-5302, pp 257-84.
  46. Davis EJ, Beebe-Dimmer JL, Yee CL, et al.: Risk of second primary tumors in men diagnosed with prostate cancer: a population-based cohort study. Cancer 120 (17): 2735-41, 2014. [PUBMED Abstract]
  47. Zhang H, Bermejo JL, Sundquist J, et al.: Prostate cancer as a first and second cancer: effect of family history. Br J Cancer 101 (6): 935-9, 2009. [PUBMED Abstract]
  48. Pilié PG, Johnson AM, Hanson KL, et al.: Germline genetic variants in men with prostate cancer and one or more additional cancers. Cancer 123 (20): 3925-3932, 2017. [PUBMED Abstract]
  49. Isaacs SD, Kiemeney LA, Baffoe-Bonnie A, et al.: Risk of cancer in relatives of prostate cancer probands. J Natl Cancer Inst 87 (13): 991-6, 1995. [PUBMED Abstract]
  50. Albright LA, Schwab A, Camp NJ, et al.: Population-based risk assessment for other cancers in relatives of hereditary prostate cancer (HPC) cases. Prostate 64 (4): 347-55, 2005. [PUBMED Abstract]
  51. Grönberg H, Bergh A, Damber JE, et al.: Cancer risk in families with hereditary prostate carcinoma. Cancer 89 (6): 1315-21, 2000. [PUBMED Abstract]
  52. Pakkanen S, Pukkala E, Kainulainen H, et al.: Incidence of cancer in finnish families with clinically aggressive and nonaggressive prostate cancer. Cancer Epidemiol Biomarkers Prev 18 (11): 3049-56, 2009. [PUBMED Abstract]
  53. Frank C, Sundquist J, Hemminki A, et al.: Familial Associations Between Prostate Cancer and Other Cancers. Eur Urol 71 (2): 162-165, 2017. [PUBMED Abstract]
  54. Page WF, Braun MM, Partin AW, et al.: Heredity and prostate cancer: a study of World War II veteran twins. Prostate 33 (4): 240-5, 1997. [PUBMED Abstract]
  55. Lange EM, Salinas CA, Zuhlke KA, et al.: Early onset prostate cancer has a significant genetic component. Prostate 72 (2): 147-56, 2012. [PUBMED Abstract]
  56. Schaid DJ, McDonnell SK, Blute ML, et al.: Evidence for autosomal dominant inheritance of prostate cancer. Am J Hum Genet 62 (6): 1425-38, 1998. [PUBMED Abstract]
  57. Grönberg H, Damber L, Damber JE, et al.: Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 146 (7): 552-7, 1997. [PUBMED Abstract]
  58. Verhage BA, Baffoe-Bonnie AB, Baglietto L, et al.: Autosomal dominant inheritance of prostate cancer: a confirmatory study. Urology 57 (1): 97-101, 2001. [PUBMED Abstract]
  59. Gong G, Oakley-Girvan I, Wu AH, et al.: Segregation analysis of prostate cancer in 1,719 white, African-American and Asian-American families in the United States and Canada. Cancer Causes Control 13 (5): 471-82, 2002. [PUBMED Abstract]
  60. Cui J, Staples MP, Hopper JL, et al.: Segregation analyses of 1,476 population-based Australian families affected by prostate cancer. Am J Hum Genet 68 (5): 1207-18, 2001. [PUBMED Abstract]
  61. Conlon EM, Goode EL, Gibbs M, et al.: Oligogenic segregation analysis of hereditary prostate cancer pedigrees: evidence for multiple loci affecting age at onset. Int J Cancer 105 (5): 630-5, 2003. [PUBMED Abstract]
  62. Valeri A, Briollais L, Azzouzi R, et al.: Segregation analysis of prostate cancer in France: evidence for autosomal dominant inheritance and residual brother-brother dependence. Ann Hum Genet 67 (Pt 2): 125-37, 2003. [PUBMED Abstract]
  63. Pakkanen S, Baffoe-Bonnie AB, Matikainen MP, et al.: Segregation analysis of 1,546 prostate cancer families in Finland shows recessive inheritance. Hum Genet 121 (2): 257-67, 2007. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario