lunes, 26 de septiembre de 2016

Langerhans Cell Histiocytosis Treatment (PDQ®)—Health Professional Version - National Cancer Institute

Langerhans Cell Histiocytosis Treatment (PDQ®)—Health Professional Version - National Cancer Institute

National Cancer Institute

Langerhans Cell Histiocytosis Treatment (PDQ®)–Health Professional Version


General Information About Langerhans Cell Histiocytosis (LCH)

The histiocytic diseases in children and adults include three major classes of disorders. Only Langerhans cell histiocytosis (LCH), a dendritic cell disorder, is discussed in detail in this summary. Erdheim-Chester disease (primarily found in adults) and juvenile xanthogranuloma (diagnosed in children and adults) are macrophage disorders. Other disorders of the macrophage/monocytoid lineages include Rosai-Dorfman disease and hemophagocytic lymphohistiocytosis. Malignant disorders include malignant histiocytosis of various histiocyte lineages (formerly called histiocytic sarcoma) and the monocytic or myelomonocytic leukemias.
LCH results from the clonal proliferation of immunophenotypically and functionally immature, morphologically rounded LCH cells along with eosinophils, macrophages, lymphocytes, and occasionally, multinucleated giant cells.[1] The term LCH cells is used because there are clear morphologic, phenotypic, and gene expression differences between Langerhans cells of the epidermis (LCs) and those in LCH lesions (LCH cells). Controversy exists regarding whether the clonal proliferation of LCH cells results from a malignant transformation or is the result of an immunologic stimulus.[2,3]
The recent discovery that approximately 60% of LCH biopsy specimens demonstrate the V600E mutation in the BRAF oncogene, regardless of stage or organ involvement, has led to the conclusion that LCH is a clonal neoplastic disorder. The same mutation has been found in other cancers, including malignant melanoma; however, V600E-mutated BRAFis also present in benign nevi, possibly indicating the need for additional mutations to render the cell malignant.[4] This finding has raised the possibility of future targeted therapy with inhibitors already in use in melanoma, and several trials of BRAF inhibitors are open in adults and children with BRAF V600E mutated tumors, including LCH. Regardless of having a BRAF V600E mutation, nearly all lesions have been reported to show evidence of activated ERK downstream of BRAF; therefore, other mutations in genes that are part of the RAS-RAF-MEK-ERK pathway might also be identified. This has been shown with activating mutations that involve the CSF-1 receptor,RAS, and MAP2K1 (MEK) for a significant percentage of BRAF V600E–negative specimens.[5,6] Regardless of the etiology of the clonal proliferation, the primary treatment is chemotherapy.
Langerhans cell histiocytosis is the terminology currently preferred over histiocytosis X,eosinophilic granulomaAbt-Letterer-Siwe diseaseHand-Schuller-Christian disease, or diffuse reticuloendotheliosis. This is based on the observation that the pathologic histiocyte common to all of these diagnoses has the identical immunophenotypic characteristics including the presence of Birbeck granules identified by electron microscopy; in addition, the pathologic histiocyte or LCH cell has a gene expression profile more closely resembling a myeloid dendritic cell, raising the possibility that LCH cells arise from a circulating precursor cell rather than the skin LC.[7,8] (Refer to the Cytogenetic and Genomic Studiessection of this summary for more information.)
LCH may involve a single organ (single-system LCH), which may be a single site (unifocal) or involve multiple sites (multifocal); or LCH may involve multiple organs (multisystem LCH), which may involve a limited number of organs or be disseminated.
  1. Laman JD, Leenen PJ, Annels NE, et al.: Langerhans-cell histiocytosis 'insight into DC biology'. Trends Immunol 24 (4): 190-6, 2003. [PUBMED Abstract]
  2. Willman CL, Busque L, Griffith BB, et al.: Langerhans'-cell histiocytosis (histiocytosis X)--a clonal proliferative disease. N Engl J Med 331 (3): 154-60, 1994. [PUBMED Abstract]
  3. Yu RC, Chu C, Buluwela L, et al.: Clonal proliferation of Langerhans cells in Langerhans cell histiocytosis. Lancet 343 (8900): 767-8, 1994. [PUBMED Abstract]
  4. Badalian-Very G, Vergilio JA, Fleming M, et al.: Pathogenesis of Langerhans cell histiocytosis. Annu Rev Pathol 8: 1-20, 2013. [PUBMED Abstract]
  5. Chakraborty R, Hampton OA, Shen X, et al.: Mutually exclusive recurrent somatic mutations in MAP2K1 and BRAF support a central role for ERK activation in LCH pathogenesis. Blood 124 (19): 3007-15, 2014. [PUBMED Abstract]
  6. Nelson DS, van Halteren A, Quispel WT, et al.: MAP2K1 and MAP3K1 mutations in Langerhans cell histiocytosis. Genes Chromosomes Cancer 54 (6): 361-8, 2015. [PUBMED Abstract]
  7. Allen CE, Li L, Peters TL, et al.: Cell-specific gene expression in Langerhans cell histiocytosis lesions reveals a distinct profile compared with epidermal Langerhans cells. J Immunol 184 (8): 4557-67, 2010. [PUBMED Abstract]
  8. Ginhoux F, Merad M: Ontogeny and homeostasis of Langerhans cells. Immunol Cell Biol 88 (4): 387-92, 2010 May-Jun. [PUBMED Abstract]
  • Updated: September 23, 2016

No hay comentarios:

Publicar un comentario