jueves, 19 de diciembre de 2019

Direct physical interaction of active Ras with mSIN1 regulates mTORC2 signaling | BMC Cancer | Full Text

Direct physical interaction of active Ras with mSIN1 regulates mTORC2 signaling | BMC Cancer | Full Text

BMC Cancer

Direct physical interaction of active Ras with mSIN1 regulates mTORC2 signaling

Abstract

Background

The mechanistic (or mammalian) target of rapamycin (mTOR), a Ser/Thr kinase, associates with different subunits forming two functionally distinct complexes, mTORC1 and mTORC2, regulating a diverse set of cellular functions in response to growth factors, cellular energy levels, and nutrients. The mechanisms regulating mTORC1 activity are well characterized; regulation of mTORC2 activity, however, remains obscure. While studies conducted in Dictyostelium suggest a possible role of Ras protein as a potential upstream regulator of mTORC2, definitive studies delineating the underlying molecular mechanisms, particularly in mammalian cells, are still lacking.

Methods

Protein levels were measured by Western blotting and kinase activity of mTORC2 was analyzed by in vitro kinase assay. In situ Proximity ligation assay (PLA) and co-immunoprecipitation assay was performed to detect protein-protein interaction. Protein localization was investigated by immunofluorescence and subcellular fractionation while cellular function of mTORC2 was assessed by assaying extent of cell migration and invasion.

Results

Here, we present experimental evidence in support of the role of Ras activation as an upstream regulatory switch governing mTORC2 signaling in mammalian cancer cells. We report that active Ras through its interaction with mSIN1 accounts for mTORC2 activation, while disruption of this interaction by genetic means or via peptide-based competitive hindrance, impedes mTORC2 signaling.

Conclusions

Our study defines the regulatory role played by Ras during mTORC2 signaling in mammalian cells and highlights the importance of Ras-mSIN1 interaction in the assembly of functionally intact mTORC2.

No hay comentarios:

Publicar un comentario