EID Journal Home > Volume 16, Number 7–July 2010
Volume 16, Number 7–July 2010
Research
Deforestation and Malaria in Mâncio Lima County, Brazil
Sarah H. Olson, Ronald Gangnon, Guilherme Abbad Silveira, and Jonathan A. Patz
Author affiliations: University of Wisconsin, Madison, Wisconsin, USA (S.H. Olson, R. Gangnon, J.A. Patz); and Santo Antônio Energia, Porto Velho, Brazil (G. Silveira)Suggested citation for this article
Abstract
Malaria is the most prevalent vector-borne disease in the Amazon. We used malaria reports for health districts collected in 2006 by the Programa Nacional de Controle da Malária to determine whether deforestation is associated with malaria incidence in the county (município) of Mâncio Lima, Acre State, Brazil. Cumulative percent deforestation was calculated for the spatial catchment area of each health district by using 60 × 60–meter, resolution-classified imagery. Statistical associations were identified with univariate and multivariate general additive negative binomial models adjusted for spatial effects. Our cross-sectional study shows malaria incidence across health districts in 2006 is positively associated with greater changes in percentage of cumulative deforestation within respective health districts. After adjusting for access to care, health district size, and spatial trends, we show that a 4.2%, or 1 SD, change in deforestation from August 1997 through August 2001 is associated with a 48% increase of malaria incidence.
Malaria risk in the Amazon and around the malaria belt is an integrated mix of environmental and sociodemographic risk factors (1–3). Despite >50 years of malaria control efforts from 1997 through 2006, on average, Brazil had ≈500,000 confirmed cases annually (4,5). Most malaria cases in Brazil occur in the Amazon Basin, where logging rates between 1999 and 2002 ranged from 12,000 to 20,000 km2 per year, the sum of which would cover the country of Denmark (6).
The main vectors of malaria in the Amazon, Anopheles darlingi mosquitoes, seek out larval habitat in partially sunlit areas, with clear water of neutral pH and aquatic plant growth, and they are notably present and more abundant in altered landscapes (7–9). In Peru, A. darlingi mosquitoes are seldom observed in standing water bodies within undisturbed forests because they are shaded and soils are more acidic, and yet these forests remain abundant and rich in mosquito species that do not transmit malaria (9,10). Along the Iquitos–Nauta Road corridor entomologic risk factors of mosquito biting rate and larval count increase with more deforestation. The mean biting rate in areas with >80% deforestation was 8.33 compared with 0.03 per night for sites with <30% deforestation (10). Furthermore, the likelihood of finding A. darlingi larvae doubled in breeding sites with <20% forest compared with sites with 20%–60% forest, and the likelihood increased 7-fold when compared with sites with >60% forest (8). Human-altered landscapes provide a milieu of suitable larval habitats for A. darling mosquitoes, including road ditches, dams, mining pits, culverts, vehicle ruts, and areas of poor clearing.
The characteristics of these mosquitoes' preferred habitat and studies of human and entomologic malaria risk suggest that deforestation and land clearing contribute to the dynamic malaria patterns along the frontier of settlement. Frontier malaria theory explains this pattern in new settlements as follows: an initial epidemic occurs that abates to persistent low incidence and eventually eradication as the result of changing social, ecologic, and environmental relationships (11). For instance, from 1985 through 1995, malaria risk in Rondônia increased during the initial colonization phase due to ecosystem transformations that promoted larval habitats and then gradually subsided as urban area expanded, agriculture became established, settlers became more knowledgeable, access to healthcare increased, home construction improved, and suitable larval habitats declined, until, finally, malaria risk was mostly linked to human behavioral factors (2,12). Frontier malaria theory is further supported by research around the Granada area in Acre, where a population-based cohort study found land clearing activities and <5 years of residence associated with higher probability of PCR-confirmed malaria morbidity (13).
In this 2006 cross-sectional study, we examined the association of deforestation, socioeconomic and demographic factors, and malaria at the level of health districts (localidades) using a uniform surveillance tool implemented in 2003 by the Brazilian Ministry of Health's Programa Nacional de Controle da Malária (PNCM). This nationally standardized system covers 5.1 million km2 of the malaria belt and reports monthly malaria statistics for >7,000 health districts. The surveillance system uses a 40-item questionnaire that includes items concerning patient demographics, diagnosis, and area of residence (14). The spatial, temporal, and overall quality of this surveillance program, combined with spatial mapping, presents an opportunity to identify ecologic risk factors within an extensive existing surveillance network. Our hypothesis was that deforestation is positively associated with higher malaria risk in health districts in Mâncio Lima, Acre State, Brazil (Figures 1, 2). We also examined the association of 2006 malaria incidence with socioeconomic and demographic factors, including age, access to care, method of surveillance, sex, and malaria type.
OPEN HERE TO SEE THE FULL-TEXT:
Deforestation and Malaria, Brazil | CDC EIDSuggested Citation for this Article
Olson SH, Gangnon R, Silveira G, Patz JA. Deforestation and malaria in Mâncio Lima County, Brazil. Emerg Infect Dis [serial on the Internet]. 2010 Jul [date cited]. Available from
http://www.cdc.gov/EID/content/16/7/1108.htmDOI: 10.3201/eid1607.091785
No hay comentarios:
Publicar un comentario