miércoles, 8 de junio de 2016

Ahead of Print -Possible Transmission of mcr-1–Harboring Escherichia coli between Companion Animals and Human - Volume 22, Number 9—September 2016 - Emerging Infectious Disease journal - CDC

Ahead of Print -Possible Transmission of mcr-1–Harboring Escherichia coli between Companion Animals and Human - Volume 22, Number 9—September 2016 - Emerging Infectious Disease journal - CDC

CDC - Centers for Disease Control and Prevention - CDC 24/7: Saving Lives. Protecting People.™EMERGING INFECTIOUS DISEASES®

Volume 22, Number 9—September 2016

Letter

Possible Transmission of mcr-1–Harboring Escherichia coli between Companion Animals and Human

Tables

Technical Appendicies

Downloads

To the Editor: Plasmid-mediated, colistin-resistance mechanism gene mcr-1 was first identified in Escherichia coliisolates from food, food animals, and human patients in November 2015 (1). Reports on detection of mcr-1 inEnterobacteriaceae from humans and food animals soon followed from ≈12 countries (25). Here we report detection of mcr-1 in colistin-resistant E. coli isolated from companion animals and the possible transmission ofmcr-1–harboring E. coli between companion animals and a person.
Three mcr-1–harboring E. coli clinical isolates were identified from specimens of 3 patients admitted to a urology ward of a hospital in Guangzhou, China. E. coli isolate EC07 was identified in the urine of a 50-year-old male patient with glomerulonephritis in October 2015. Isolate EC08 was cultured from the urine of a 48-year-old male patient with prostatitis in December 2015. Isolate EC09 was identified in the blood of an 80-year-old male patient with bladder cancer 3 weeks after EC08 was identified.
Review of medical records identified the patient carrying E. coli isolate EC07 as a worker at a pet shop. In light of this finding, we collected a total of 53 fecal samples from 39 dogs and 14 cats in the pet shop where the man worked. We isolated and identified colonies consistent with E. coli from fecal samples on MacConkey agar plates (Thermo Fisher, Beijing, China) and API 20E system (bioMérieux, Durham, NC, USA). We prepared crude DNA samples of isolates for PCR testing by boiling cells in water. Among them, 6 were positive for mcr-1 by PCR and sequencing (4 from dogs and 2 from cats). All 6 isolates were resistant to colistin, polymyxin B, cephalosporin, gentamicin, and ciprofloxacin by using the agar dilution method, in accordance with the European Committee on Antimicrobial Susceptibility Testing (http://www.eucast.org) for colistin and polymyxin B and Clinical and Laboratory Standards Institute guidelines (http://www.clsi.org) for the other antimicrobial drugs. We identified various resistance genes accounting for the multidrug resistance in these 9 mcr-1–positive isolates (6,7) (Table). We noted that E. coli Isolate EC09 was also resistant to carbapenems and positive for blaIMP-4. We observed co-production of mcr-1 and IMP-type metallo-β-lactamase in E. coli.
We subjected all isolates to multilocus sequence typing, in accordance with the protocol described at http://mlst.warwick.ac.uk/mlst/dbs/Ecoli, and pulsed-field gel electrophoresis as described previously (810). We identified 5 mcr-1–positive isolates from 4 dogs (PET02–04 and PET06) and isolate EC07 as sequence type (ST) 354. Isolates PET01 and PET05, identified from cats, belonged to ST93 and a new ST strain, respectively. Isolates EC08 and EC09, from the patients who shared the same hospital room with the pet shop worker, were ST156 (Table). Results of pulsed-field gel electrophoresis were consistent with multilocus sequence typing results and showed that isolates consisted of 5 types (types I to V; Technical Appendix[PDF - 200 KB - 1 page]). Isolate EC07 was clonally related to 4 E. coli strains from dogs, according criteria described by Tenover et al. (10), suggesting possible transmission of mcr-1–harboring E. coli between dogs and the patient. Colistin resistance was successfully transferred to E. coli C600 through conjugation in all isolates, suggesting that mcr-1 was located on transferable plasmids.
These findings suggest that mcr-1–producing E. coli can colonize companion animals and be transferred between companion animals and humans. The findings also suggest that, in addition to food animals and humans, companion animals can serve as a reservoir of colistin-resistant E. coli, adding another layer of complexity to the rapidly evolving epidemiology of plasmid-mediated colistin resistance in the community.
Xue-Fei Zhang, Yohei Doi, Xi Huang, Hong-Yu Li, Lan-Lan Zhong, Kun-Jiao Zeng, Yan-Fen Zhang, Sandip Patil, and Guo-Bao TianComments to Author 
Author affiliations: Sun Yat-Sen University Zhongshan School of Medicine, Guangzhou, China (X.-.F Zhang, X. Huang, L.-L. Zhong, K.-J. Zeng, Y.-F. Zhang, S. Patil, G.-B. Tian)Ministry of Education Key Laboratory of Tropical Diseases Control, Guangzhou (X.-F. Zhang, X. Huang, L.-L. Zhong, K.-J. Zeng, Y.-F. Zhang, S. Patil, G.-B. Tian)University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA (Y. Doi)Sun Yat-Sen University Memorial Hospital, Guangzhou (H.-Y. Li)

Acknowledgments

We sincerely thank the patients and the owners of companion animals for giving written consent for publication.
This work was supported by research grants from the National Natural Science Foundation of China (no. 81471988), the 111 Project (nos. B13037 and B12003), the Guangdong Natural Science Foundation (no. S2013010015810), and the Program of Science and Technology New Star of Guangzhou (no. 2014J2200038).

References

  1. Liu Y-YWang YWalsh TRYi L-XZhang RSpencer JEmergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis2016;16:1618DOIPubMed
  2. Nordmann PLienhard RKieffer NClerc OPoirel L. Plasmid-mediated colistin-resistant Escherichia coli in bacteremia in Switzerland. Clin Infect Dis. 2016 Mar 1:ciw124.
  3. Falgenhauer LWaezsada SEYao YImirzalioglu CKäsbohrer ARoesler UColistin resistance gene mcr-1 in extended-spectrum β-lactamase–producing and carbapenemase-producing Gram-negative bacteria in Germany. Lancet Infect Dis2016;16:2823DOIPubMed
  4. Tse HYuen KYDissemination of the mcr-1 colistin resistance gene. Lancet Infect Dis2016;16:1456DOIPubMed
  5. Malhotra-Kumar SXavier BBDas AJLammens CButaye PGoossens HColistin resistance gene mcr-1 harboured on a multidrug resistant plasmid.Lancet Infect Dis2016;16:2834DOIPubMed
  6. Tian GBHuang YMFang ZLQing YZhang XFHuang XCTX-M-137, a hybrid of CTX-M-14-like and CTX-M-15–like β-lactamases identified in anEscherichia coli clinical isolate. J Antimicrob Chemother2014;69:20815DOIPubMed
  7. Yong DToleman MAGiske CGCho HSSundman KLee KCharacterization of a new metallo-beta-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother2009;53:504654DOIPubMed
  8. Wirth TFalush DLan RColles FMensa PWieler LHSex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol.2006;60:113651DOIPubMed
  9. Tian GBWang HNZhang AYZhang YFan WQXu CWDetection of clinically important β-lactamases in commensal Escherichia coli of human and swine origin in western China. J Med Microbiol2012;61:2338DOIPubMed
  10. Tenover FCArbeit RDGoering RVMickelsen PAMurray BEPersing DHInterpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol1995;33:22339 .PubMed

Table

Technical Appendix

Suggested citation for this article: Zhang X-F, Doi Y, Huang X, Li H-Y, Zhong L-L, Zeng K-J, et al. Possible transmission of mcr-1–harboring Escherichia colibetween companion animals and human. Emerg Infect Dis. 2016 Sep [date cited]. http://dx.doi.org/10.3201/eid2209.160464


DOI: 10.3201/eid2209.160464

No hay comentarios:

Publicar un comentario