viernes, 23 de mayo de 2014

Short-Term Malaria Reduction by Single-Dose Azithromycin during Mass Drug Administration for Trachoma, Tanzania - Volume 20, Number 6—June 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Short-Term Malaria Reduction by Single-Dose Azithromycin during Mass Drug Administration for Trachoma, Tanzania - Volume 20, Number 6—June 2014 - Emerging Infectious Disease journal - CDC



link to Volume 20, Number 6—June 2014

Volume 20, Number 6—June 2014

Research

Short-Term Malaria Reduction by Single-Dose Azithromycin during Mass Drug Administration for Trachoma, Tanzania

Stephen E. Schachterle1, George Mtove, Joshua P. Levens, Emily Clemens, Lirong Shi, Amrita Raj, J. Stephen Dumler, Beatriz Munoz, Shelia West, and David J. SullivanComments to Author 
Author affiliations: Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA (S.E. Schachterle, L. Shi, A. Raj, D.J. Sullivan)National Institute for Medical Research, Ubwari, Tanzania (G. Mtove)Johns Hopkins University School of Medicine, Baltimore (J.P. Levens, E. Clemens, J.S. Dumler, B. Munoz, S. West)

Abstract

Single-dose mass drug administration of azithromycin (AZT) is underway to eliminate trachoma worldwide. Studies in Ethiopia showed a reduction in all-cause childhood deaths after administration. To examine the effect of single-dose AZ MDA on prevalent malaria infections in a large prospective cohort of children and parents in Dodoma Province, Tanzania, we quantified the temporal prevalence of malaria parasitemia by real-time PCR for 6 months after single-dose AZT. In the first month after treatment but not in subsequent months, Plasmodium falciparum infections were reduced by 73% (95% CI 43%–89%) in treatment versus control villages and differences remained significant (p = 0.00497) in multivariate models with village-level random effects. Genetic sequencing of P. falciparumribosomal L4 protein showed no mutations associated with AZT resistance. AZT mass drug administration caused a transient, 1-month antimalarial effect without selecting for P. falciparum ribosomal L4 resistance mutations in a region with a 10-year history of treating trachoma with this drug.
Malaria can be treated or prevented with the broad-spectrum antimicrobial drugs tetracycline or azithromycin (AZT) (1). In vitro, AZT interferes with malarial parasite replication by targeting the unique apicoplast organelle of the parasite (1). AZT inhibits malarial parasite growth 10–fold every 48 hours, and the pharmacokinetics of AZT predict that it remains at concentrations high enough to limit parasite growth for >1 week (2). AZT might interfere with transmission by exoerythrocytic inhibition of parasite liver stages in humans and mice (3) and by interference with ookinete and sporozoite production in mosquitoes (4). Monotherapy with AZT is not typically used to treat malaria. However AZT is highly effective against Chlamydia trachomatis, the causative agent of trachoma, which causes blindness (5,6). Persons with malaria who live in trachoma-endemic regions may undergo repeated AZT therapy as part of the World Health Organization–sponsored global trachoma eradication program (7,8).
Data regarding the effects of AZ mass drug administration (MDA) on malaria are limited. In a cluster randomized trial in The Gambia, AZ MDA given in 3 doses (20 mg/kg) 7 days apart reduced malaria rates by half when measured at 1 time point in children 5–14 years of age (9). More recently, a 49% reduction in the odds of death (95% CI 29%–90%) was reported for children 1–9 years of age in an AZ MDA treatment group compared with controls in Ethiopia (10,11). Porco et al. suggested that reductions in malaria prevalence associated with AZT MDA might have contributed to observed decreases in overall deaths. (10).
For malaria treatment, a randomized clinical trial that compared AZT/artesunate with artemether/lumefantrine in Muheza, Tanzania, reported that the odds of treatment failure were 5 times greater (95% CI 3.3–11.4) in the group that received AZT/artesunate (12). The authors postulated that the AZT/artesunate showed treatment failure because MDA for trachoma in Tanzania could have led to localized Plasmodium spp. resistance to AZT (12). Plasmodium spp. drug resistance to AZT has not been documented in the field. However, in vitro selection for AZT resistance identified a G76V mutation among conserved active site amino acids at position 71–79 in P. falciparum apicoplast-encoded ribosomal protein L4 (PfRpL4) (PFC10_API0043) (1.) A Cochrane meta-analysis report stated that “azithromycin’s future for the treatment of malaria does not look promising” (13) and cited studies in which AZT, although well tolerated, was inferior to tetracycline for malaria prophylaxis (1417).
In the current study, we evaluated malaria prevalence in a cohort of 2,053 children and adults in central Tanzania to examine the effect of single dose AZ MDA on prevalent malaria infections. We also searched for PfRpL4 mutations that might confer P. falciparum AZT resistance.



Acknowledgments

We thank Harran Mkocha, Diane Stare, and the PretPlus study team for providing tireless efforts during this study; Edward Sambu and Fikirini Msuya for assisting with training of local field staff and reading peripheral blood smears; Stephen Magesa for providing technical support; and Natalie Sanders for assisting with DNA sequencing.
This study was supported by the Bill and Melinda Gates Foundation (grant 48027); Research to Prevent Blindness (unrestricted grant); and the National Institute of Allergy and Infectious Diseases (grant U01 AI068613: (HIV Prevention Trials Network–Laboratory Network). Pfizer, Inc. donated the azithromycin for the study. S.W. was supported by a Senior Scientific Award from Research to Prevent Blindness.

References

  1. Sidhu ABSun QNkrumah LJDunne MWSacchettini JCFidock DAIn vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J Biol Chem2007;282:2494504DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Duran JMAmsden GWAzithromycin: indications for the future? Expert Opin Pharmacother2000;1:489505DOIExternal Web Site IconPubMedExternal Web Site Icon
  3. Friesen JSilvie OPutrianti EDHafalla JCMatuschewski KBorrmann SNatural immunization against malaria: causal prophylaxis with antibiotics. Sci Transl Med.2010;2:40ra49 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  4. Shimizu SOsada YKanazawa TTanaka YArai MSuppressive effect of azithromycin onPlasmodium berghei mosquito stage development and apicoplast replication. Malar J.2010;9:73 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  5. Burton MJMabey DCThe global burden of trachoma: a review. PLoS Negl Trop Dis.2009;3:e460DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Mathew AATurner ATaylor HRStrategies to control trachoma. Drugs.2009;69:95370DOIExternal Web Site IconPubMedExternal Web Site Icon
  7. West SKMunoz BMkocha HGaydos CAQuinn TCNumber of years of annual mass treatment with azithromycin needed to control trachoma in hyper-endemic communities in Tanzania. J Infect Dis2011;204:26873DOIExternal Web Site IconPubMedExternal Web Site Icon
  8. Polack SBrooker SKuper HMariotti SMabey DFoster AMapping the global distribution of trachoma. Bull World Health Organ2005;83:9139 .PubMedExternal Web Site Icon
  9. Sadiq STGlasgow KWDrakeley CJMuller OGreenwood BMMabey DCEffects of azithromycin on malariometric indices in The Gambia. Lancet1995;346:8812DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Porco TCGebre TAyele BHouse JKeenan JZhou ZEffect of mass distribution of azithromycin for trachoma control on overall mortality in Ethiopian children: a randomized trial. JAMA2009;302:9628DOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Keenan JDAyele BGebre TZerihun MZhou ZHouse JIChildhood mortality in a cohort treated with mass azithromycin for trachoma. Clin Infect Dis2011;52:8838DOIExternal Web Site IconPubMedExternal Web Site Icon
  12. Sykes AHendriksen IMtove GMandea VMrema HRutta BAzithromycin plus artesunate versus artemether-lumefantrine for treatment of uncomplicated malaria in Tanzanian children: a randomized, controlled trial. Clin Infect Dis2009;49:1195201DOIExternal Web Site IconPubMedExternal Web Site Icon
  13. van Eijk AMTerlouw DJAzithromycin for treating uncomplicated malaria. Cochrane Database Syst Rev2011;2:CD006688 .PubMedExternal Web Site Icon
  14. Andersen SLOloo AJGordon DMRagama OBAleman GMBerman JDSuccessful double-blinded, randomized, placebo-controlled field trial of azithromycin and doxycycline as prophylaxis for malaria in western Kenya. Clin Infect Dis1998;26:14650DOIExternal Web Site IconPubMedExternal Web Site Icon
  15. Heppner DG JrWalsh DSUthaimongkol NTang DBTulyayon SPermpanich B,Randomized, controlled, double-blind trial of daily oral azithromycin in adults for the prophylaxis of Plasmodium vivax malaria in western Thailand. Am J Trop Med Hyg.2005;73:8429 .PubMedExternal Web Site Icon
  16. Taylor WRRichie TLFryauff DJPicarima HOhrt CTang DMalaria prophylaxis using azithromycin: a double-blind, placebo-controlled trial in Irian Jaya, Indonesia. Clin Infect Dis1999;28:7481DOIExternal Web Site IconPubMedExternal Web Site Icon
  17. Taylor WRRichie TLFryauff DJOhrt CPicarima HTang DTolerability of azithromycin as malaria prophylaxis in adults in northeast Papua, Indonesia. Antimicrob Agents Chemother2003;47:2199203DOIExternal Web Site IconPubMedExternal Web Site Icon
  18. Coles CLLevens JSeidman JCMkocha HMunoz BWest SMass distribution of azithromycin for trachoma control is associated with short-term reduction in risk of acute lower respiratory infection in young children. Pediatr Infect Dis J2012;31:3416DOIExternal Web Site IconPubMedExternal Web Site Icon
  19. Coles CLSeidman JCLevens JMkocha HMunoz BWest SAssociation of mass treatment with azithromycin in trachoma-endemic communities with short-term reduced risk of diarrhea in young children. Am J Trop Med Hyg2011;85:6916DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. Schachterle SEMtove GLevens JPClemens EGShi LRaj APrevalence and density-related concordance of three diagnostic tests for malaria in a region of Tanzania with hypoendemic malaria. J Clin Microbiol2011;49:388591DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Taylor RTodd MKongloa LMaurice LNahozya ESanga HEvidence of the dependence of groundwater resources on extreme rainfall in east Africa. Nature Climate Change. 2013;3:374–8.
  22. World AgroMeteorological Information Service, Southern African Development Community (SADC). SADC Agromet Bulletin Jan 21–31, 2009 [cited 2014 Feb 24].http://wamis.gmu.edu/countries/sadc_rev.phpExternal Web Site Icon
  23. National Bureau of Statistics. Tanzania HIV/AIDS and malaria indicator survey: key findings. Calverton (MD): The Bureau; 2009.
  24. Reller MEClemens EGSchachterle SEMtove GASullivan DJDumler JSMultiplex 5′ nuclease-quantitative PCR for diagnosis of relapsing fever in a large Tanzanian cohort. J Clin Microbiol2011;49:32459DOIExternal Web Site IconPubMedExternal Web Site Icon
  25. Waller LGotway C. Applied spatial statistics for public health data. Hoboken (NJ): Wiley-IEEE; 2004.
  26. Diggle PRibero P JrChristensen O. An introduction to model-based geostatistics. Spatial Statistics and Computational Methods. 2003;173:43–86.
  27. R Development Core Team. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing; 2008.
  28. Rowlingson BDiggle P. SPLANCS: spatial and space-time point pattern analysis. R package version 2.01–27; 2010 [cited 2014 Feb 24].https://r-forge.r-project.org/scm/viewvc.php/pkg/splancs/DESCRIPTION?pathrev=1194&sortby=date&root=rspatial&sortdir=down&view=diff&r1=1111&r2=1112External Web Site Icon
  29. Bates DMaechler MDai D. lme4:Linear mixed-effects models using S4 classes. R package version 0.999375–42; 2008 [cited 2014 Feb 24].http://lme4.r-forge.r-project.org/External Web Site Icon
  30. von Seidlein LGreenwood BMMass administrations of antimalarial drugs. Trends Parasitol2003;19:45260DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Diggle PHeagerty PLiang KZeger S. Analysis of longitudinal data. 2nd ed. New York: Oxford University Press; 2002.

Figures

Tables

Technical Appendix

Suggested citation for this article: Schachterle SE, Mtove G, Levens JP, Clemens E, Shi L, Raj A, et al. Short-term malaria reduction by single-dose azithromycin during mass drug administration for trachoma, Tanzania. Emerg Infect Dis [Internet]. 2014 Jun [date cited].http://dx.doi.org/10.3201/eid2006.131302External Web Site Icon
DOI: 10.3201/eid2006.131302
1Current affiliation: Pfizer, Inc., New York, New York, USA.

No hay comentarios:

Publicar un comentario