viernes, 23 de mayo de 2014

Human Polyomavirus 9 Infection in Kidney Transplant Patients - Volume 20, Number 6—June 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Human Polyomavirus 9 Infection in Kidney Transplant Patients - Volume 20, Number 6—June 2014 - Emerging Infectious Disease journal - CDC

link to Volume 20, Number 6—June 2014

Volume 20, Number 6—June 2014


Human Polyomavirus 9 Infection in Kidney Transplant Patients

Els van der MeijdenComments to Author , Herman F. Wunderink, Caroline S. van der Blij-de Brouwer, Hans L. Zaaijer, Joris I. Rotmans, Jan Nico Bouwes Bavinck, and Mariet C.W. Feltkamp
Author affiliations: Leiden University Medical Center, Leiden, the Netherlands (E. van der Meijden, H.F. Wunderink, C.S. van der Blij-de Brouwer, J.I. Rotmans, J.N. Bouwes Bavinck, M.C.W. Feltkamp)Sanquin Blood Supply Foundation, Amsterdam, the Netherlands (H.L. Zaaijer)


Several human polyomaviruses of unknown prevalence and pathogenicity have been identified, including human polyomavirus 9 (HPyV9). To determine rates of HPyV9 infection among immunosuppressed patients, we screened serum samples from 101 kidney transplant patients in the Netherlands for HPyV9 DNA and seroreactivity. A total of 21 patients had positive results for HPyV9 DNA; positivity rates peaked at 3 months after transplantation, but the highest viral loads were measured just after transplantation. During 18 months of follow-up, HPyV9 seroprevalence increased from 33% to 46% among transplant patients; seroprevalence remained stable at ≈30% in a control group of healthy blood donors in whom no HPyV9 DNA was detected. Further analysis revealed an association between detection of HPyV9 and detection of BK polyomavirus but not of cytomegalovirus. Our data indicate that HPyV9 infection is frequent in kidney transplant patients, but the nature of infection—endogenous or donor-derived—and pathogenic potential of this virus remain unknown.
The Polyomaviridae constitute a family of small DNA viruses that infect a variety of hosts. BK polyomavirus (BKPyV) and JC polyomavirus (JCPyV), discovered in 1971 (1,2), are well-known examples of human polyomaviruses (HPyVs) that cause severe disease in immunocompromised patients. Serologic data have revealed that most polyomaviruses are ubiquitous (36). In case of JCPyV and BKPyV, primary infection occurs early in life, without apparent symptoms, and persists throughout life as latent infection in the kidneys, accompanied by occasional virus shedding in urine (7). When immunity is decreased, these viruses can reactivate with detectable viremia and manifestation of disease, which poses a threat to, among others, patients who receive solid-organ transplants. For kidney transplant patients, BKPyV infection is considered the most common viral complication and causes nephropathy and graft loss in 1%–10% of cases if left untreated (8). It is not known what determines the severity of BKPyV infection and whether co-infection is involved in the pathogenesis.
Since 2007, at least 10 novel HPyVs have been discovered (920); of these, Merkel cell polyomavirus (MCPyV) and trichodysplasia spinulosa–associated polyomavirus (TSPyV) have been shown to be associated with disease (11,19,21,22). Human polyomavirus 9 (HPyV9), so far without a disease association, was identified in 2011 from a serum sample from a kidney transplant patient (17). Overall seroprevalence of HPyV9 has been determined to be 25% to 50% (2326).
Because HPyV9 was originally isolated from a kidney transplant recipient (17), we aimed to systematically study the presence of HPyV9 infection in kidney transplant patients and investigate a possible association with the known nephropathogenic BKPyV. We analyzed a cohort of 101 transplant patients who received either a kidney transplant or a simultaneous kidney–pancreas transplant for the appearance of markers for HPyV9 infection during the 18 months after transplantation. We assessed the presence of HPyV9 DNA and IgG seroresponses in serum samples. The HPyV9 findings in the transplant cohort were compared with those obtained for an age- and sex-matched cohort of healthy blood donors. Co-infection with BKPyV was investigated by comparing observed HPyV9 and BKPyV viremia levels in the transplant cohort. For comparative purposes, we also tested for cytomegalovirus (CMV), which, like polyomaviruses, frequently reactivates during immunosuppressive drug use after transplantation.


We thank Eric Claas for designing primers and probes of the HPyV9 and BKPyV PCR and Ann Vossen for fruitful discussions.
This work was supported in part by Dutch Kidney Foundation grant WO 2013.06/13A1D302.


  1. Gardner SDField AMColeman DVHulme BNew human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet1971;297:12537DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Padgett BLWalker DLZuRhein GMEckroade RJDessel BHCultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet.1971;297:125760 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  3. Carter JJPaulson KGWipf GCMiranda DMadeleine MMJohnson LGAssociation of Merkel cell polyomavirus–specific antibodies with Merkel cell carcinoma. J Natl Cancer Inst2009;101:151022DOIExternal Web Site IconPubMedExternal Web Site Icon
  4. Egli AInfanti LDumoulin ABuser ASamaridis JStebler CPrevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J Infect Dis.2009;199:83746DOIExternal Web Site IconPubMedExternal Web Site Icon
  5. Kean JMRao SWang MGarcea RLSeroepidemiology of human polyomaviruses. PLoS Pathog2009;5:e1000363DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. van der Meijden EKazem SBurgers MMJanssens RBouwes Bavinck JNde Melker H,Seroprevalence of trichodysplasia spinulosa–associated polyomavirus. Emerg Infect Dis.2011;17:135563 .PubMedExternal Web Site Icon
  7. Gjoerup OChang YUpdate on human polyomaviruses and cancer. Adv Cancer Res.2010;106:151DOIExternal Web Site IconPubMedExternal Web Site Icon
  8. Hirsch HHRandhawa PBK polyomavirus in solid organ transplantation. Am J Transplant.2013;13(Suppl 4):17988DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Allander TAndreasson KGupta SBjerkner ABogdanovic GPersson MAIdentification of a third human polyomavirus. J Virol2007;81:41306 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Buck CBPhan GQRaiji MTMurphy PMMcDermott DHMcBride AAComplete genome sequence of a tenth human polyomavirus. J Virol2012;86:10887DOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Feng HShuda MChang YMoore PSClonal integration of a polyomavirus in human Merkel cell carcinoma. Science2008;319:1096100DOIExternal Web Site IconPubMedExternal Web Site Icon
  12. Gaynor AMNissen MDWhiley DMMackay IMLambert SBWu GIdentification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog.2007;3:e64DOIExternal Web Site IconPubMedExternal Web Site Icon
  13. Korup SRietscher JCalvignac-Spencer STrusch FHofmann JMoens UIdentification of a novel human polyomavirus in organs of the gastrointestinal tract. PLoS ONE.2013;8:e58021DOIExternal Web Site IconPubMedExternal Web Site Icon
  14. Lim ESReyes AAntonio MSaha DIkumapayi UNAdeyemi MDiscovery of STL polyomavirus, a polyomavirus of ancestral recombinant origin that encodes a unique T antigen by alternative splicing. Virology2013;436:295303DOIExternal Web Site IconPubMedExternal Web Site Icon
  15. Sauvage VFoulongne VCheval JAr GMPariente KDereure OHuman polyomavirus related to African green monkey lymphotropic polyomavirus. Emerg Infect Dis.2011;17:136470 .PubMedExternal Web Site Icon
  16. Schowalter RMPastrana DVPumphrey KAMoyer ALBuck CBMerkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe2010;7:50915DOIExternal Web Site IconPubMedExternal Web Site Icon
  17. Scuda NHofmann JCalvignac-Spencer SRuprecht KLiman PKuhn JA novel human polyomavirus closely related to the African green monkey–derived lymphotropic polyomavirus (LPV). J Virol2011;85:458690DOIExternal Web Site IconPubMedExternal Web Site Icon
  18. Siebrasse EAReyes ALim ESZhao GMkakosya RSManary MJIdentification of MW polyomavirus, a novel polyomavirus in human stool. J Virol2012;86:103216 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  19. van der Meijden EJanssens RWLauber CBouwes Bavinck JNGorbalenya AE,Feltkamp MCDiscovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog2010;6:e1001024DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. Yu GGreninger ALIsa PPhan TGMartinez MAde la Luz SMDiscovery of a novel polyomavirus in acute diarrheal samples from children. PLoS ONE2012;7:e49449DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Kazem Svan der Meijden EKooijman SRosenberg ASHughey LCBrowning JC,Trichodysplasia spinulosa is characterized by active polyomavirus infection. J Clin Virol.2012;53:22530DOIExternal Web Site IconPubMedExternal Web Site Icon
  22. Shuda MArora RKwun HJFeng HSarid RFernandez-Figueras MTHuman Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer2009;125:12439DOIExternal Web Site IconPubMedExternal Web Site Icon
  23. Nicol JTTouze ARobinot RArnold FMazzoni ETognon MSeroprevalence and cross-reactivity of human polyomavirus 9. Emerg Infect Dis2012;18:132932 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  24. Nicol JTRobinot RCarpentier ACarandina GMazzoni ETognon MAge-specific seroprevalence of Merkel cell polyomavirus, human polyomaviruses 6, 7, and 9 and trichodysplasia Spinulosa–associated polyomavirus. Clin Vaccine Immunol.2013;20:3638DOIExternal Web Site IconPubMedExternal Web Site Icon
  25. Trusch FKlein MFinsterbusch TKuhn JHofmann JEhlers BSeroprevalence of human polyomavirus 9 and cross-reactivity to African green monkey–derived lymphotropic polyomavirus. J Gen Virol2012;93:698705 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  26. van der Meijden EBialasiewicz SRockett RJTozer SJSloots TPFeltkamp MCDifferent serologic behavior of MCPyV, TSPyV, HPyV6, HPyV7 and HPyV9 polyomaviruses found on the skin. PLoS ONE2013;8:e81078DOIExternal Web Site IconPubMedExternal Web Site Icon
  27. Antonsson AWaterboer TBouwes Bavinck JNAbeni Dde Koning MEuvrard S,Longitudinal study of seroprevalence and serostability of 34 human papillomavirus types in European organ transplant recipients. Virology2013;436:919DOIExternal Web Site IconPubMedExternal Web Site Icon
  28. Niesters HGQuantitation of viral load using real-time amplification techniques. Methods.2001;25:41929 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  29. Kalpoe JSKroes ACde Jong MDSchinkel Jde Brouwer CSBeersma MFValidation of clinical application of cytomegalovirus plasma DNA load measurement and definition of treatment criteria by analysis of correlation to antigen detection. J Clin Microbiol.2004;42:1498504DOIExternal Web Site IconPubMedExternal Web Site Icon
  30. Waterboer TSehr PMichael KMFranceschi SNieland JDJoos TOMultiplex human papillomavirus serology based on in situ–purified glutathione S–transferase fusion proteins. Clin Chem2005;51:184553DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Csoma ESapy TMeszaros BGergely LNovel human polyomaviruses in pregnancy: higher prevalence of BKPyV, but no WUPyV, KIPyV and HPyV9. J Clin Virol.2012;55:2625DOIExternal Web Site IconPubMedExternal Web Site Icon
  32. Imajoh MHashida YTaniguchi AKamioka MDaibata MNovel human polyomaviruses, Merkel cell polyomavirus and human polyomavirus 9, in Japanese chronic lymphocytic leukemia cases. J Hematol Oncol. 2012;5:25 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  33. Rockett RJSloots TPBowes SO’Neill NYe SRobson JDetection of novel polyomaviruses, TSPyV, HPyV6, HPyV7, HPyV9 and MWPyV in feces, urine, blood, respiratory swabs and cerebrospinal fluid. PLoS ONE2013;8:e62764DOIExternal Web Site IconPubMedExternal Web Site Icon
  34. Hirsch HHSteiger JPolyomavirus BKLancet Infect Dis2003;3:61123DOIExternal Web Site IconPubMedExternal Web Site Icon
  35. Wieland USilling SHellmich MPotthoff APfister HKreuter A. Human polyomaviruses 6, 7, 9, 10 and trichodysplasia spinulosa–associated polyomavirus in HIV-infected men. J Gen Virol. 2014 [Epub ahead of print].External Web Site Icon



Technical Appendix

Suggested citation for this article: van der Meijden E, Wunderink HF, van der Blij-de Brouwer CS, Zaaijer HL, Rotmans JI, Bouwes Bavinck JN, et al. Human polyomavirus 9 infection in kidney transplant patients. Emerg Infect Dis [Internet]. 2014 Jun [date cited]. Web Site Icon
DOI: 10.3201/eid2006.140055

No hay comentarios:

Publicar un comentario