viernes, 23 de mayo de 2014

Genetic Evidence of Drug-Resistant Malarial Strain from the Democratic Republic of the Congo Imported to Guatemala - Volume 20, Number 6—June 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Genetic Evidence of Drug-Resistant Malarial Strain from the Democratic Republic of the Congo Imported to Guatemala - Volume 20, Number 6—June 2014 - Emerging Infectious Disease journal - CDC



link to Volume 20, Number 6—June 2014

Volume 20, Number 6—June 2014

Research

Genetic Evidence of Drug-Resistant Malarial Strain from the Democratic Republic of the Congo Imported to Guatemala

Jaymin C. PatelComments to Author , Steve M. Taylor, Patricia C. Juliao, Christian M. Parobek, Mark Janko, Luis Demetrio Gonzalez, Lucia Ortiz, Norma Padilla, Antoinette K. Tshefu, Michael Emch, Venkatachalam Udhayakumar, Kim Lindblade, and Steven R. Meshnick
Author affiliations: University of North Carolina, Chapel Hill, North Carolina, USA (J.C. Patel, S.M. Taylor, C.M. Parobek, M. Janko, M. Emch, S.R. Meshnick)Centers for Disease Control and Prevention, Atlanta, Georgia, USA (P.C. Juliao, V. Udhayakumar, K. Lindblade)Military Medical Center, Guatemala City, Guatemala (L.D. Gonzalez)Universidad de Valle de Guatemala, Guatemala City (L. Ortiz, N. Padilla)University of Kinshasa, Kinshasa, Democratic Republic of the Congo (A.K. Tshefu)

Abstract

Imported malaria threatens control and elimination efforts in countries that have low rates of transmission. In 2010, an outbreak of Plasmodium falciparum malaria was reported among United Nations peacekeeping soldiers from Guatemala who had recently returned from the Democratic Republic of the Congo (DRC). Epidemiologic evidence suggested that the soldiers were infected in the DRC, but local transmission could not be ruled out in all cases. We used population genetic analyses of neutral microsatellites to determine the outbreak source. Genetic relatedness was compared among parasites found in samples from the soldiers and parasite populations collected in the DRC and Guatemala; parasites identified in the soldiers were more closely related to those from the DRC. A phylogenetic clustering analysis confirms this identification with >99.9% confidence. Thus, results support the hypothesis that the soldiers likely imported malaria from the DRC. This study demonstrates the utility of molecular genotyping in outbreak investigations.
Imported malaria threatens control and elimination efforts in countries that report low malaria transmission rates (13). In Central America, malaria transmission decreased by >50% during 2000–2010 (4); in 2010, the Guatemala Ministerio de Salud Pública y Asistencia Social reported 31 confirmed cases of malaria, all caused by the species Plasmodium falciparum (5). Central America is unusual compared with other areas in which malaria is endemic because chloroquine remains an effective treatment option for P. falciparum infection there, but not in other parts of the world (68); the introduction of parasites harboring chloroquine-resistant genotypes could fuel a resurgence of clinical illness and transmission.
In 2010, an outbreak of malaria was reported among 12 soldiers from Guatemala shortly after they returned from a United Nations (UN) peacekeeping mission in the Democratic Republic of the Congo (DRC). Of the 12, 8 also reported visiting >1 area in Guatemala in which malaria is endemic when they returned but before the outbreak was identified. An outbreak investigation was undertaken after 1 of the infected soldiers died; laboratory tests of blood from this patient identified choroquine-resistant and -sensitive strains of P. falciparum.
The epidemiologic evidence suggested that the soldiers were infected while stationed in the DRC (9). Because the local acquisition of chloroquine-resistant parasites in Guatemala could necessitate a change in local treatment practices, it was vital to determine the origin of the soldiers’ infections.
Molecular markers have been used to assess the genetic relatedness of malarial parasites from different geographic regions (10,11). Accordingly, if the soldiers acquired P. falciparum in the DRC during their stay, the genotypes of the parasites isolated from the soldiers’ samples would be more closely related to parasites from the DRC than to parasites from Guatemala. To test this hypothesis, we used molecular methods from the field of population genetics to determine the source of the malaria outbreak among the soldiers who returned to Guatemala after being stationed in the DRC.

Acknowledgments

We thank Silvia Sosa for help in obtaining samples from Guatemala. We also thank Fabiola Enriquez, Mario Roberto Perez Franco, Harold Garcia Sergio Fernando, Nitsch Montiel, and Mario Luis Ovalle Figuero for their help in obtaining samples from the soldiers.
This work was supported by a Gillings Innovation Laboratory award from the UNC Gillings School of Global Public Health and by grants from the National Institutes of Health (NIH) (NIAID 1R56AI097609-01) and National Science Foundation (NSF) (BSC-13339949).

References

  1. Feachem RGPhillips AAHwang JCotter CWielgosz BGreenwood BMShrinking the malaria map: progress and prospects. Lancet2010;376:156678DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Martens PHall LMalaria on the move: human population movement and malaria transmission. Emerg Infect Dis2000;6:1039DOIExternal Web Site IconPubMedExternal Web Site Icon
  3. Tatem AJSmith DLInternational population movements and regional Plasmodium falciparum malaria elimination strategies. Proc Natl Acad Sci U S A2010;107:122227DOIExternal Web Site IconPubMedExternal Web Site Icon
  4. World Health Organization. World malaria report 2011. Geneva: The Organization; 2011. [cited 2014 Mar 28].http://www.who.int/malaria/world_malaria_report_2011/en/External Web Site Icon
  5. National Center for Epidemiology, Ministry of Public Health and Social Assistance. 2010 Vital statistics, Guatemala [in Spanish] 2010 [cited 2014 Mar 27]. Ciudad de Guatemala: The Ministry.http://epidemiologia.mspas.gob.gt/vigepi/2010/MEMORIA%20REPUBLICA%20DE%20GUATEMALA%202010.pdf Adobe PDF fileExternal Web Site Icon
  6. World Health Organization. Guidelines for the treatment of malaria, 2nd ed. Geneva: The Organization; 2010 [modified 2011 June 8, cited 2014 Mar 28].http://whqlibdoc.who.int/publications/2010/9789241547925_eng.pdf?ua=1External Web Site Icon
  7. World Health Organization. Global report on antimalarial efficacy and drug resistance: 2000–2010. Geneva: The Organization; 2010 [cited 2014 Mar 28].http://whqlibdoc.who.int/publications/2010/9789241500470_eng.pdf Adobe PDF fileExternal Web Site Icon
  8. Mejia Torres REBanegas EIMendoza MDiaz CBucheli STMFontecha GAEfficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras. Am J Trop Med Hyg2013;88:8504DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Juliao PCSosa SGonzalez LDPadilla NOrtiz LGoldman IImportation of chloroquine-resistant Plasmodium falciparum by Guatemalan peacekeepers returning from the Democratic Republic of the Congo. Malar J2013;12:344DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Rebaudet SBogreau HSilai RLepere JFBertaux LPradines BGenetic structure ofPlasmodium falciparum and elimination of malaria, Comoros archipelago. Emerg Infect Dis2010;16:168694DOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Schultz LWapling JMueller INtsuke POSenn NNale JMultilocus haplotypes reveal variable levels of diversity and population structure of Plasmodium falciparum in Papua New Guinea, a region of intense perennial transmission. Malar J2010;9:336DOIExternal Web Site IconPubMedExternal Web Site Icon
  12. Chwalisz NKinosian S. Guatemala sends Special Forces to D. R. Congo for UN peacekeeping mission. 2013 [cited 2013 July 15].http://justf.org/blog/2013/08/29/guatemala-sends-special-forces-dr-congo-un-peacekeeping-missionExternal Web Site Icon
  13. Taylor SMMessina JPHand CCJuliano JJMuwonga JTshefu AKMolecular malaria epidemiology: mapping and burden estimates for the Democratic Republic of the Congo, 2007. PLoS ONE2011;6:e16420DOIExternal Web Site IconPubMedExternal Web Site Icon
  14. Messina JPTaylor SMMeshnick SRLinke AMTshefu AKAtua BPopulation, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo.Malar J2011;10:161DOIExternal Web Site IconPubMedExternal Web Site Icon
  15. Taylor SMvan Eijk AMHand CCMwandagalirwa KMessina JPTshefu AK,Quantification of the burden and consequences of pregnancy-associated malaria in the Democratic Republic of the Congo. J Infect Dis2011;204:176271DOIExternal Web Site IconPubMedExternal Web Site Icon
  16. Taylor SMAntonia ALParobek CMJuliano JJJanko MEmch MPlasmodium falciparum sulfadoxine resistance is geographically and genetically clustered within the DR Congo. Scientific reports. 2013;3:1165.
  17. Herderschee JKaiser KASamba DM. Resilience of an African giant: boosting growth and development in the Democratic Republic of Congo. Washington, (DC),The World Bank;2012. 116 p.
  18. Nair SWilliams JTBrockman APaiphun LMayxay MNewton PNA selective sweep driven by pyrimethamine treatment in southeast asian malaria parasites. Mol Biol Evol.2003;20:152636DOIExternal Web Site IconPubMedExternal Web Site Icon
  19. Anderson TJHaubold BWilliams JTEstrada-Franco JGRichardson LMollinedo R,Microsatellite markers reveal a spectrum of population structures in the malaria parasitePlasmodium falciparum. Mol Biol Evol2000;17:146782DOIExternal Web Site IconPubMedExternal Web Site Icon
  20. Anderson TJSu XZBockarie MLagog MDay KPTwelve microsatellite markers for characterization of Plasmodium falciparum from finger-prick blood samples. Parasitology.1999;119:11325DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Roper CPearce RBredenkamp BGumede JDrakeley CMosha FAntifolate antimalarial resistance in southeast Africa: a population-based analysis. Lancet.2003;361:117481DOIExternal Web Site IconPubMedExternal Web Site Icon
  22. Balloux FLugon-Moulin NThe estimation of population differentiation with microsatellite markers. Mol Ecol2002;11:15565DOIExternal Web Site IconPubMedExternal Web Site Icon
  23. Peakall RODSmouse PEGENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes2006;6:28895DOIExternal Web Site Icon
  24. Hardy OJVekemans XSPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes2002;2:61820DOIExternal Web Site Icon
  25. Excoffier LLaval GSchneider SArlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online2005;1:4750http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2658868/External Web Site Icon.PubMedExternal Web Site Icon
  26. Saitou NNei MThe neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol1987;4:40625http://mbe.oxfordjournals.org/content/4/4/406.longExternal Web Site Icon.PubMedExternal Web Site Icon
  27. Cavalli-Sforza LLEdwards AWPhylogenetic analysis. Models and estimation procedures. Am J Hum Genet1967;19:23357http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1706274/External Web Site Icon.PubMedExternal Web Site Icon
  28. Populations v. 1.2.31 [Internet]. Hudson (MA): Bioinformatics Organization [updated 2010 Oct 20; cited 2013 June 9].http://bioinformatics.org/~tryphon/populations/External Web Site Icon
  29. Paradis EClaude JStrimmer KAPE: analyses of phylogenetics and evolution in R language. Bioinformatics2004;20:28990DOIExternal Web Site IconPubMedExternal Web Site Icon
  30. Hamady MLozupone CKnight RFast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J2010;4:1727DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. Verhoef LVennema Hvan Pelt WLees DBoshuizen HHenshilwood KUse of norovirus genotype profiles to differentiate origins of foodborne outbreaks. Emerg Infect Dis2010;16:61724 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  32. Barry PMGardner TJFunk EOren EField KShaw TMultistate outbreak of MDR TB identified by genotype cluster investigation. Emerg Infect Dis2012;18:1136DOIExternal Web Site IconPubMedExternal Web Site Icon
  33. Krause GSchoneberg IAltmann DStark KChemoprophylaxis and malaria death rates.Emerg Infect Dis2006;12:44751DOIExternal Web Site IconPubMedExternal Web Site Icon
  34. The Global Health Group and the Malaria Atlas Project. Atlas of Malaria-eliminating countries. San Francisco: The Global Health Group, Global Health Sciences, University of California, San Francisco; 2011 [cited 2014 Mar 28].http://www.malariaeliminationgroup.org/publications/atlas-of-malaria-eliminating-countries-2011External Web Site Icon
  35. The Global Fund to Fight AIDS. Tuberculosis and Malaria News Releases [Internet]. Ten countries rally to eliminate malaria in Central America and the Caribbean. San Jose, Costa Rica: The Global Fund to Fight AIDS, Tuberculosis and Malaria; 2013 Jun 28 [cited 2014 Mar 28].http://www.theglobalfund.org/en/mediacenter/newsreleases/2013-06-28_Ten_Countries_Rally_to_Eliminate_Malaria_in_Central_America_and_the_Caribbean/External Web Site Icon
  36. Warren MCollins WERichardson BBSkinner JCMorphologic variants of Anopheles albimanus and susceptibility to Plasmodium vivax and P. falciparum. Am J Trop Med Hyg.1977;26:60711http://www.ajtmh.org/content/26/4/607.longExternal Web Site Icon.PubMedExternal Web Site Icon
  37. Baton LARanford-Cartwright LCOokinete destruction within the mosquito midgut lumen explains Anopheles albimanus refractoriness to Plasmodium falciparum (3D7A) oocyst infection. Int J Parasitol2012;42:24958DOIExternal Web Site IconPubMedExternal Web Site Icon
  38. Wilson PEKazadi WKamwendo DDMwapasa VPurfield AMeshnick SRPrevalence of pfcrt mutations in Congolese and Malawian Plasmodium falciparum isolates as determined by a new Taqman assay. Acta Trop2005;93:97106DOIExternal Web Site IconPubMedExternal Web Site Icon
  39. Gouandjika-Vasilache IMazitchi AGumede NManirakiza AManenegu CKoyazegbeTDWild poliovirus importation, Central African Republic. Emerg Infect Dis.2013;19:10123DOIExternal Web Site IconPubMedExternal Web Site Icon
  40. Odoom JKForrest LDunn GOsei-Kwasi MObodai EArthur-Quarm JInterruption of poliovirus transmission in Ghana: molecular epidemiology of wild-type 1 poliovirus isolated from 1995 to 2008. J Infect Dis2012;206:111120DOIExternal Web Site IconPubMedExternal Web Site Icon

Figures

Table

Suggested citation for this article: Patel JC, Taylor SM, Juliao PC, Parobek CM, Janko M, Gonzalez LD, et al. Genetic evidence of drug-resistant malarial strain from the Democratic Republic of the Congo imported to Guatemala. Emerg Infect Dis. 2014 Jun [date cited].http://dx.doi.org/10.3201/eid2006.131204External Web Site Icon
DOI: 10.3201/eid2006.131204

No hay comentarios:

Publicar un comentario