miércoles, 19 de agosto de 2015

Effect of Culture-Independent Diagnostic Tests on Future Emerging Infections Program Surveillance - Volume 21, Number 9—September 2015 - Emerging Infectious Disease journal - CDC


Effect of Culture-Independent Diagnostic Tests on Future Emerging Infections Program Surveillance - Volume 21, Number 9—September 2015 - Emerging Infectious Disease journal - CDC

Volume 21, Number 9—September 2015
Emerging Infections Program

Emerging Infections Program

Effect of Culture-Independent Diagnostic Tests on Future Emerging Infections Program Surveillance

Gayle LangleyComments to Author , John Besser, Martha Iwamoto, Fernanda C. Lessa, Alicia Cronquist, Tami H. Skoff, Sandra Chaves, Dave Boxrud, Robert W. Pinner, and Lee H. Harrison
Author affiliations: Centers for Disease Control and Prevention, Atlanta, Georgia, USA (G. Langley, J. Besser, M. Iwamoto, F.C. Lessa, T.H. Skoff, S. Chaves, R.W. Pinner)Colorado Department of Public Health and Environment, Denver, Colorado, USA (A. Cronquist)Minnesota Department of Health, St. Paul, Minnesota, USA (D. Boxrud);Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA (L.H. Harrison)


The Centers for Disease Control and Prevention Emerging Infections Program (EIP) network conducts population-based surveillance for pathogens of public health importance. Central to obtaining estimates of disease burden and tracking microbiological characteristics of these infections is accurate laboratory detection of pathogens. The use of culture-independent diagnostic tests (CIDTs) in clinical settings presents both opportunities and challenges to EIP surveillance. Because CIDTs offer better sensitivity than culture and are relatively easy to perform, their use could potentially improve estimates of disease burden. However, changes in clinical testing practices, use of tests with different sensitivities and specificities, and changes to case definitions make it challenging to monitor trends. Isolates are still needed for performing strain typing, antimicrobial resistance testing, and identifying other molecular characteristics of organisms. In this article, we outline current and future EIP activities to address issues associated with adoption of CIDTs, which may apply to other public health surveillance.
The Centers for Disease Control and Prevention (CDC) Emerging Infections Program (EIP) network conducts population- and laboratory-based surveillance for foodborne, health care–associated, respiratory, and invasive bacterial pathogens of public health importance. The main objectives of surveillance are to 1) measure disease burden and monitor disease trends over time, 2) evaluate the impact of public health interventions, 3) track microbiological and molecular characteristics of pathogens, and 4) detect emerging infectious disease threats. EIP data are used for national projections of disease incidence and formulation of national public health policy for prevention and control of disease. Central to accomplishing these objectives is accurate laboratory detection of the pathogens under surveillance.
In the field of microbiology, culture remains the standard for detection of most organisms, but in clinical settings, detection of pathogens is increasingly reliant on culture-independent diagnostic tests (CIDTs). CIDTs include antigen-based tests and molecular tests. The most commonly used molecular tests are the nucleic acid amplification tests, which include PCR. In clinical settings, most CIDTs have several advantages over culture. Foremost, CIDT results can be obtained more rapidly than culture, a feature that can be critical for clinical decision-making. Additionally, CIDTs may require less technical expertise to perform. Although initial adoption of these newer technologies can be expensive, costs generally decline over time, particularly those associated with labor.
CIDTs have the potential to improve estimates of disease burden because 1) they may be more sensitive than culture, 2) their relative ease of use may increase the number of patients tested, 3) they may enable detection of organisms for which there are currently no practical laboratory tests, and 4) they may increase the ability to detect polymicrobial infections. However, incorporating CIDTs into public health surveillance presents several challenges. Interpreting trends in disease incidence can be difficult because of changes to testing practices and surveillance case definitions. Although also true for culture, detection of molecular material may not reflect the presence of a living microbe and true disease, especially when detected from nonsterile body sites. At least for now, it is generally more difficult to assess microbiological and molecular characteristics, such as pathogen subtypes and antimicrobial drug resistance and genotypes, without bacterial isolates. Addressing these and other factors that affect estimates of disease burden and the characterization of infectious pathogens is critical for public health surveillance systems and clinical decision-making. EIP sites have a long history of close collaboration between CDC, state and local public health departments, academia, and clinical laboratories, making them uniquely positioned to help chart the course in addressing these concerns. Because many infections are already being diagnosed by use of CIDTs and more CIDTs will probably be developed and used in the near future, a path for addressing these issues is urgently needed. This article provides an overview of current testing practices for pathogens under EIP surveillance and addresses how EIPs plan to advance their core objectives in the face of this dynamic diagnostic environment.

Dr. Langley is a medical epidemiologist in the Respiratory Diseases Branch at CDC and medical director of ABCs.


  1. Millman AReed CDaily Kirley PAragon DMeek JFarley MImpact of changes in diagnostic testing on estimated influenza-associated hospitalization rates in the Influenza Hospitalization Surveillance Network (FluSurv-NET): United States, 2003–2013. Presented at: 63rd EIS Conference; 2014 Apr 28– May 1; Atlanta, Georgia, USA.
  2. US Food and Drug Administration. Respiratory multiplex panels. Medical devices 2013–4 [cited 2014 Dec 16].http://www.accessdata.fda.gov/scripts/cdrh/devicesatfda/index.cfm?sia=1
  3. Lessa FCMu YBamberg WMBeldavs ZGDumyati GKDunn JRBurden of Clostridium difficile infection in the United States. N Engl J Med.2015;372:82534DOIPubMed
  4. Faulkner AESkoff THClark TAMartin SW. Evolution of pertussis diagnostic testing in the U.S.: 1995–2009. Presented at: Council of State and Territorial Epidemiologists Annual Conference; 2011 Jun 12–16; Pittsburgh, Pennsylvania, USA. Atlanta: The Council; 2011.
  5. Aitken SLHemmige VSKoo HLVuong NNLasco TMGarey KWReal-world performance of a microarray-based rapid diagnostic for gram-positive bloodstream infections and potential utility for antimicrobial stewardship. Diagn Microbiol Infect Dis2015;81:48DOIPubMed
  6. Altun OAlmuhayawi MUllberg MOzenci VClinical evaluation of the FilmArray blood culture identification panel in identification of bacteria and yeasts from positive blood culture bottles. J Clin Microbiol2013;51:41306DOIPubMed
  7. Mylonakis EClancy CJOstrosky-Zeichner LGarey KWAlangaden GJVazquez JAT2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis2015;60:8929DOIPubMed
  8. Baarda BLo EBellamkonda SLunl TCloud JHanson KFilmArray Meningitis/Encephalitis panel [cited 2015 July 8]. Presented at: 30th Clinical Virology Symposium; 2014 Apr 27–30; Daytona Beach, Florida, USA; Pan American Society for Clinical Virology; 2014.https://ww5.aievolution.com/asm1401/index.cfm?do=abs.viewAbs&abs=1305
  9. Lehmann LEHunfeld KPEmrich THaberhausen GWissing HHoeft AA multiplex real-time PCR assay for rapid detection and Immunol (Berl).2008;197:313–24 and.
  10. Cronquist ABMody RKAtkinson RBesser JTobin D’Angelo MHurd SImpacts of culture-independent diagnostic practices on public health surveillance for bacterial enteric pathogens. Clin Infect Dis2012;54(Suppl 5):S4329DOIPubMed
  11. Jones TFGerner-Smidt PNonculture diagnostic tests for enteric diseases. Emerg Infect Dis2012;18:5134DOIPubMed
  12. US Food and Drug Administration. Gastrointestimal multiplex panels. Devices@FDA 2014 [cited 2014 Dec 16].http://www.accessdata.fda.gov/scripts/cdrh/devicesatfda/
  13. Iwamoto MHuang JYCronquist ABMedus CHurd SZansky SBacterial enteric infections detected by culture-independent diagnostic tests—FoodNet, United States, 2012–2014. MMWR Morb Mortal Wkly Rep2015;64:2527 .PubMed
  14. Kumar SHenrickson KJUpdate on influenza diagnostics: lessons from the novel H1N1 influenza A pandemic. Clin Microbiol Rev2012;25:34461.DOIPubMed
  15. Viala CLe Monnier AMaataoui NRousseau CCollignon APoilane IComparison of commercial molecular assays for toxigenic Clostridium difficiledetection in stools: BD GeneOhm Cdiff, XPert C. difficile and illumigene C. difficile. J Microbiol Methods2012;90:835 and. DOIPubMed
  16. Zouari ASmaoui HKechrid AThe diagnosis of pertussis: which method to choose? Crit Rev Microbiol2012;38:11121 . DOIPubMed
  17. Abdeldaim GMStralin KKorsgaard JBlomberg JWelinder-Olsson CHerrmann BMultiplex quantitative PCR for detection of lower respiratory tract infection and meningitis caused by Streptococcus pneumoniae, Haemophilus influenzae and Neisseria meningitidis. BMC Microbiol.2010;10:310DOIPubMed
  18. Sacchi CTFukasawa LOGoncalves MGSalgado MMShutt KACarvalhanas TRIncorporation of real-time PCR into routine public health surveillance of culture negative bacterial meningitis in Sao Paulo, Brazil. PLoS ONE2011;6:e20675DOIPubMed
  19. Wang YGuo GWang HYang XShao FYang CComparative study of bacteriological culture and real-time fluorescence quantitative PCR (RT-PCR) and multiplex PCR-based reverse line blot (mPCR/RLB) hybridization assay in the diagnosis of bacterial neonatal meningitis. BMC Pediatr.2014;14:224DOIPubMed
  20. Mandal STatti KMWoods-Stout DCassiday PKFaulkner AEGriffith MMPertussis pseudo-outbreak linked to specimens contaminated byBordetella pertussis DNA from clinic surfaces. Pediatrics2012;129:e42430DOIPubMed
  21. Yi HKim YHKim JSLee NJShin KChoi JHImpact of influenza virus escape-mutations on influenza detection by the rapid influenza diagnostic test. J Med Virol2013;85:70915DOIPubMed
  22. Ba XHarrison EMEdwards GFHolden MTLarsen ARPetersen ANovel mutations in penicillin-binding protein genes in clinical Staphylococcus aureus isolates that are methicillin resistant on susceptibility testing, but lack the mec gene. J Antimicrob Chemother2014;69:5947DOIPubMed
  23. Williams MMTaylor TH JrWarshauer DMMartin MDValley AMTondella MLHarmonization of Bordetella pertussis real-time PCR diagnostics in the United States in 2012. J Clin Microbiol2015;53:11823DOIPubMed
  24. Millman AJReed CDaily Kirley PAragon DMeek JFarley MMImproving accuracy of influenza-associated hospitalization rate estimates. Emerg Infect Dis2015;21:15951602.
  25. Reed CChaves SSDaily Kirley PEmerson RAragon DHancock EBEstimating influenza disease burden from population-based surveillance data in the United States. PLoS ONE2015;10:e0118369DOIPubMed
  26. Burnham CACarroll KCDiagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev2013;26:60430DOIPubMed
  27. Cohn ACMacNeil JRHarrison LHHatcher CTheodore JSchmidt MChanges in Neisseria meningitidis disease epidemiology in the United States, 1998–2007: implications for prevention of meningococcal disease. Clin Infect Dis2010;50:18491DOIPubMed
  28. Macneil JRCohn ACZell ERSchmink SMiller EClark TEarly estimate of the effectiveness of quadrivalent meningococcal conjugate vaccine.Pediatr Infect Dis J2011;30:4515 .PubMed
  29. Pilishvili TLexau CFarley MMHadler JHarrison LHBennett NMSustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis2010;201:3241DOIPubMed
  30. Whitney CGPilishvili TFarley MMSchaffner WCraig AS. Lynfield, et al. Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. Lancet. 2006;368:1495–502.
  31. Chai SJWhite PLLathrop SLSolghan SMMedus CMcGlinchey BMSalmonella enterica serotype Enteritidis: increasing incidence of domestically acquired infections. Clin Infect Dis2012;54(Suppl 5):S48897DOIPubMed
  32. Rainbow JJewell BDanila RNBoxrud DBeall BVan Beneden CInvasive group A streptococcal disease in nursing homes, Minnesota, 1995–2006.Emerg Infect Dis2008;14:7727 .PubMed
  33. Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013 [cited 2015 Jul 3].http://www.cdc.gov/drugresistance/threat-report-2013/
  34. Klevens RMMorrison MANadle JPetit SGershman KRay SInvasive methicillin-resistant Staphylococcus aureus infections in the United States.JAMA2007;298:176371DOIPubMed
  35. Krueger ALGreene SABarzilay EJHenao OVugia DHanna SClinical outcomes of nalidixic acid, ceftriaxone, and multidrug-resistant nontyphoidal Salmonella infections compared with pansusceptible infections in FoodNet sites, 2006–2008. Foodborne Pathog Dis.2014;11:33541DOIPubMed
  36. Dahesh SHensler MEVan Sorge NMGertz RESchrag SNizet VPoint mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to beta-lactam antibiotics. Antimicrob Agents Chemother2008;52:29158DOIPubMed
  37. Pawloski LCQueenan AMCassiday PKLynch ASHarrison MJShang WPrevalence and molecular characterization of pertactin-deficientBordetella pertussis in the United States. Clin Vaccine Immunol2014;21:11925 . DOIPubMed
  38. Gould LHMody RKOng KLClogher PCronquist ABGarman KNIncreased recognition of non-O157 Shiga toxin-producing Escherichia coliinfections in the United States during 2000–2010: epidemiologic features and comparison with E. coli O157 infections. Foodborne Pathog Dis.2013;10:453–60.
  39. McDonald LCKillgore GEThompson AOwens RCKazakova SVSambol SPAn epidemic, toxin gene-variant strain of Clostridium difficile. N Engl J Med2005;353:243341DOIPubMed


Suggested citation for this article: Langley G, Besser J, Iwamoto M, Lessa FC, Cronquist A, Skoff TH, et al. Effect of culture-independent diagnostic tests on future Emerging Infections Program surveillance. Emerg Infect Dis. 2015 Sep [date cited]. http://dx.doi.org/10.3201/eid2109.150570
DOI: 10.3201/eid2109.150570

No hay comentarios:

Publicar un comentario