Ahead of Print -Evaluation of the Benefits and Risks of Introducing Ebola Community Care Centers, Sierra Leone - Volume 21, Number 3—March 2015 - Emerging Infectious Disease journal - CDC
Figure 1. Structure of transmission model used to evaluate the benefits and risks of introducing CCCs into Western Area, Sierra Leone. Persons start off being susceptible to infection (S). Upon infection with Ebola...
Volume 21, Number 3—March 2015
Research
Evaluation of the Benefits and Risks of Introducing Ebola Community Care Centers, Sierra Leone
On This Page
Adam J. Kucharski , Anton Camacho, Francesco Checchi, Ron Waldman, Rebecca F. Grais, Jean-Clement Cabrol, Sylvie Briand, Marc Baguelin, Stefan Flasche, Sebastian Funk, and W. John Edmunds
Abstract
In some parts of western Africa, Ebola treatment centers (ETCs) have reached capacity. Unless capacity is rapidly scaled up, the chance to avoid a generalized Ebola epidemic will soon diminish. The World Health Organization and partners are considering additional Ebola patient care options, including community care centers (CCCs), small, lightly staffed units that could be used to isolate patients outside the home and get them into care sooner than otherwise possible. Using a transmission model, we evaluated the benefits and risks of introducing CCCs into Sierra Leone’s Western Area, where most ETCs are at capacity. We found that use of CCCs could lead to a decline in cases, even if virus transmission occurs between CCC patients and the community. However, to prevent CCC amplification of the epidemic, the risk of Ebola virus–negative persons being exposed to virus within CCCs would have to be offset by a reduction in community transmission resulting from CCC use.
The current epidemic of Ebola virus disease in western Africa has resulted in thousands of cases during 2014 (1). To date, Ebola treatment centers (ETCs) have been used to isolate patients and provide clinical care. These facilities typically have large capacity (some have >100 beds) and function under high levels of infection control. However, in Sierra Leone, ETCs have reached capacity, and patients are being turned away (1). The reproduction number (defined as the average number of secondary cases generated by a typical infectious person) has been >1 in Sierra Leone, leading to growth in the number of cases reported each week (2–4). As a result, there is an urgent need to rapidly scale up treatment and isolation facilities. Delays in implementation will result in falling further behind the epidemic curve and in an even greater need for patient care facilities.
ETCs are complex facilities that require a substantial number of staff and time to set up; thus, the World Health Organization and other partners are looking at additional care options to supplement existing ETCs. One approach is the use of Ebola community care centers (CCCs), which would represent a possible change in operational approach (5–7). As envisioned in the World Health Organization approach, CCCs would be small units with 3–5 beds and would be staffed by a small group of health care workers. The main objective would be to isolate patients outside the home and, hence, reduce the movement and contacts of infectious persons within the community. CCCs are designed to engage the community and to increase the acceptance of isolation. Care for patients in CCCs would be provided primarily by a caregiver who would be given personal protective equipment (PPE) and basic patient care training. Patients would be free to leave the unit while awaiting test results. The specific utilization of CCCs would vary, depending on local context, and units would form part of a package of interventions, including monitoring of community contacts and burials within the community.
CCCs would be easier to set up than ETCs because they would be lightly staffed and could be made from local materials or even tents. Thus, CCCs have the potential to more rapidly begin treating patients. At present in Sierra Leone, the average time from symptom onset to hospitalization for Ebola virus disease patients is 4.6 days, which means patients remain in the community until the late stage of the disease (4). However, the use of CCCs has potential risks: the number of cases could be amplified if Ebola virus–negative patients in CCC assessment areas are exposed to infectious persons before admission, and virus could be transmitted between patients and caregivers or others in the community if virus containment within the CCC is not perfect. Given the urgent need for new operational solutions for Ebola patient care, it is critical to assess the conditions under which CCCs might exacerbate or mitigate the epidemic and to compare the scale-up of CCCs with the expansion of ETCs or home care.
We used an Ebola virus transmission model to evaluate the relative benefits and risks of introducing CCCs in a situation similar to that in Western Area, an administrative division of Sierra Leone. Western Area has exhibited consistent exponential growth in reported cases, and ETCs in the area are at capacity (1). Expert elicitation was used to estimate plausible values for key model parameters; these values were compared with simulation results to establish whether CCCs could be beneficial. We also estimated how many CCC beds, either alone or in combination with additional ETC beds, would be required to potentially turn over the epidemic (i.e., reduce the reproduction number below the critical threshold of 1).
Dr. Kucharski is a research fellow in infectious disease epidemiology at London School of Hygiene and Tropical Medicine. His research focuses on the dynamics of emerging infections and how population structure and social behavior shape disease transmission.
Acknowledgment
Funding was provided by the Medical Research Council (fellowships: MR/J01432X/1 to A.C., MR/K021524/1 to A.J.K., and MR/K021680/1 to S.F.) and the Research for Health in Humanitarian Crises (R2HC) Programme, managed by the Research for Humanitarian Assistance (grant no. 13165).
References
- Ministry of Health and Sanitation. Ebola virus disease–situation report [cited 2014 Dec 10]. http://Health.gov.sl
- Gomes MFC, Pastore y Piontti A, Rossi L, Chao D, Longini I, Halloran ME, Assessing the international spreading risk associated with the 2014 West African Ebola outbreak. PLoS Currents Outbreaks. 2014 Sep 2 [cited 2014 Dec 1]. http://currents.plos.org/outbreaks/article/assessing-the-international-spreading-risk-associated-with-the-2014-west-african-ebola-outbreak/
- Nishiura H, Chowell G. Early transmission dynamics of Ebola virus disease (EVD), West Africa, March to August 2014. Euro Surveill. 2014;19:20894.PubMed
- WHO Ebola Response Team. Ebola virus disease in West Africa—the first 9 months of the epidemic and forward projections. N Engl J Med.2014;371:1481–95 . DOIPubMed
- Save The Children. Save the Children opens first Ebola community care centre in Liberia [cited 2014 Dec 1].http://www.savethechildren.net/article/save-children-opens-first-ebola-community-care-centre-liberia
- Logan G, Vora NM, Nyensuah TG, Gasasira A, Mott J, Walke H. Establishment of a community care center for isolation and management of Ebola patients—Bomi County Liberia, October 2014. MMWR Morb Mortal Wkly Rep. 2014;63:1010–2 .PubMed
- Whitty CJ, Farrar J, Ferguson N, Edmunds WJ, Piot P, Leach M, Tough choices to reduce Ebola transmission. Nature. 2014;515:192–4 .DOIPubMed
- Camacho A, Kucharski AJ, Funk S, Breman J, Piot P, Edmunds WJ. Potential for large outbreaks of Ebola virus disease. Epidemics. 2014;9:70–8.
- Legrand J, Grais RF, Boelle PY, Valleron AJ, Flahault A. Understanding the dynamics of Ebola epidemics. Epidemiol Infect. 2007;135:610–21 .DOIPubMed
- Lewnard JA, Mbah MLN, Alfaro-Murillo JA, Altice FL, Bawo L, Nyenswah TG, Dynamics and control of Ebola virus transmission in Montserrado, Liberia: a mathematical modelling analysis. Lancet Infect Dis. 2014;14:1189–95 . DOIPubMed
- Fischer WA II, Hynes NA, Perl TM. Protecting health care workers from Ebola: personal protective equipment is critical but is not enough. Ann Intern Med. 2014;161:753–4. DOIPubMed
- World Health Organization. Global Alert and Response (GAR). Infection prevention and control guidance for care of patients in health-care settings, with focus on Ebola [cited 2014 Nov 20]. http://who.int/csr/resources/publications/ebola/filovirus_infection_control/en/
- Medécins sans Frontières. Ebola: MSF case numbers [cited 2014 Dec 1]. http://www.doctorswithoutborders.org/our-work/medical-issues/ebola
- World Health Organization. Ebola virus disease [cited 2014 Dec 1]. http://who.int/csr/disease/ebola/en/
- HDXBeta (Humanitarian Data Exchange Beta). West Africa: Ebola outbreak [cited 2014 Dec 8]. https://data.hdx.rwlabs.org/ebola
- UK Government. Department for International Development. UK action plan to defeat Ebola in Sierra Leone. 2014 Sep 23 [cited 2014 Dec 1].https://www.gov.uk/government/publications/uk-action-plan-to-defeat-ebola-in-sierra-leone-background
- ACAPS. Sierra Leone: country profile [cited 2014 Dec 1] http://reliefweb.int/sites/reliefweb.int/files/resources/acaps-country-profile-sierra-leone.pdf
- Funk S, Knight GM, Jansen VAA. Ebola: the power of behaviour change. Nature. 2014;515:492 . DOIPubMed
- Dowell SF, Mukunu R, Ksiazek TG, Khan AS, Rollin PE, Peters CJ. Transmission of Ebola hemorrhagic fever: a study of risk factors in family members, Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis. 1999;179:S87–91 . DOIPubMed
- Yamin D, Gertler S, Ndeffo-Mbah ML, Skrip LA, Fallah M, Nyenswah TG, Effect of Ebola progression on transmission and control in Liberia. Ann Intern Med. 2014 [Epub 2014 Oct 28].
Figures
Table
Suggested citation for this article: Kucharski AJ, Camacho A, Checchi F, Waldman R, Grais RF, Cabrol JC, et al. Evaluation of the benefits and risks of introducing Ebola community care centers, Sierra Leone. Emerg Infect Dis. 2015 Mar [date cited]. http://dx.doi.org/10.3201/eid2103.141892
No hay comentarios:
Publicar un comentario