viernes, 26 de octubre de 2018

Spotted Fever Group Rickettsiae in Inner Mongolia, China, 2015–2016 - Volume 24, Number 11—November 2018 - Emerging Infectious Diseases journal - CDC

Spotted Fever Group Rickettsiae in Inner Mongolia, China, 2015–2016 - Volume 24, Number 11—November 2018 - Emerging Infectious Diseases journal - CDC





Volume 24, Number 11—November 2018

Research Letter

Spotted Fever Group Rickettsiae in Inner Mongolia, China, 2015–2016

Gaowa, Wulantuya, Xuhong Yin, Shengchun Guo, Chunlian Ding, Minzhi Cao, Hiroki Kawabata, Kozue Sato, Shuji Ando, Hiromi Fujita, Fumihiko Kawamori, Hongru Su, Masahiko Shimada, Yuko Shimamura, Shuichi Masuda, and Norio OhashiComments to Author 
Author affiliations: College of Hetao, Bayan Nur City, Inner Mongolia, China (Gaowa, Wulantuya, X. Yin, S. Guo, C. Ding)Bayan Nur Centers for Disease Control and Prevention, Bayan Nur City (M. Cao)National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, Japan (H. Kawabata, K. Sato, S. Ando)Mahara Institute of Medical Acarology, Anan City, Tokushima, Japan (H. Fujita)University of Shizuoka, Shizuoka City, Japan (F. Kawamori, H. Su, M. Shimada, Y. Shimamura, S. Masuda, N. Ohashi)

Abstract

We found Rickettsia raoultii infection in 6/261 brucellosis-negative patients with fever of unknown origin in brucellosis-endemic Inner Mongolia, China. We further identified Hyalomma asiaticum ticks associated with R. raoultiiH. marginatum ticks associated with R. aeschlimannii, and Dermacentor nuttalli ticks associated with both rickettsiae species in the autonomous region.
Spotted fever group rickettsiae (SFGR) are vectorborne pathogens. In China, 5 SFGR genotypes have been identified as causative agents of human rickettsiosis: R. heilongjiangensisR. sibirica subsp. sibirica BJ-90, Candidatus Rickettsia tarasevichiae, R. raoultii, and Rickettsia sp. XY99 (14).
Brucellosis, a zoonotic disease, is highly endemic to Inner Mongolia, China, and is increasing in workers in agriculture or animal husbandry (5). However, some agriculture workers with brucellosis-like symptoms, including general malaise and fever, were seronegative for Brucella spp. We suspected that fever of unknown origin among brucellosis-seronegative patients might be caused by tickborne pathogens. We identified 6 cases of human R. raoultiiinfections in brucellosis-seronegative patients in western Inner Mongolia, and we investigated exposure to ticks infected with SFGR.
During 2015–2016, we obtained 261 blood samples from brucellosis-seronegative patients with fever of unknown origin in Bayan Nur Centers for Disease Control and Prevention (Bayan Nur City, Inner Mongolia, China). The review board of the Department of Medicine at College of Hetao (Bayan Nur City) approved the study. We extracted DNA from each blood sample using the DNeasy Mini Kit (QIAGEN, Hilden, Germany) and conducted PCR targeting SFGR gltA (6). The PCR primers used, gltA-Fc (5′-CGAACTTACCGCTATTAGAATG-3′) and gltA-Rc (5′-CTTTAAGAGCGATAGCTTCAAG-3′), were described previously (4). We designed the primers 16S rDNA R-2F (5′-GAAGATTCTCTTTCGGTTTCGC-3′), 16S rDNA R-2R (5′-GTCTTGCTTCCCTCTGTAAAC-3′), rompA-Fb (5′-GGTGCGAATATAGACCCTGA-3′), and rompA-Ra (5′-TTAGCTTCAGAGCCTGACCA-3′) for this study and deposited the sequences obtained of gltAompA, and 16S rDNA into GenBank (accession nos. MH267733–47). We used genomic DNA extracted from L929 cells infected with Rickettsia sp. LON-13 (gltA: AB516964) as a positive control.
We detected gltA amplicons from 6/261 (2.3%) blood samples (Table). All 6 patients had strong malaise and mild fever of 36.8°C –37.3°C but no rash. Five of these patients also had arthralgia and vomiting.
Sequence and phylogenetic analysis showed that the sequences of 6 nearly full-length (1.1 kb) gltA amplicons with were identical to each other and to R. raoultii gltA (GenBank accession no. DQ365803). We further analyzed ompA and 16S rDNA in gltA-positive samples. All 6 samples were PCR positive for both genes; 552-bp sequences of the amplicons were identical to sequences of R. raoultii ompA (GenBank accession no. AH015610), and 389-bp sequences of the amplicons were identical to sequences of R. raoultii 16S rDNA (GenBank accession no. EU036982). PCR results were negative for the genes Anaplasma phagocytophilum p44/msp2Ehrlichia chaffeensis p28/omp-1, and Borrelia spp. flaB. An indirect immunofluorescence assay showed that IgM and IgG titers against R. japonica were 40–80 for IgM in 3 patients and 160 for IgG in 2 patients.
To assess patients’ risk of infection with SFGR by tick exposure, we collected 2,458 ticks morphologically identified as Hyalomma marginatum (n = 198), H. asiaticum (n = 766), Dermacentor nuttalli (n = 1,418), and Rhipicephalus turanicus (n = 76) from livestock and pet animals including sheep, cattle, camels, and dogs in western Inner Mongolia during 2015–2016 (Technical AppendixFigure 1). We collected unattached ticks within animal hair, but not attached ticks. We prepared DNA extracted from salivary glands of each tick and conducted PCR screening by rickettsial gltA detection as described. We detected gltA in 1,266 (51.5%) of the total 2,458 ticks.
We classified the amplicons into 2 groups by restriction fragment-length polymorphism using AluI and RsaI, and we sequenced 25–45 representative amplicons in each group. On the basis of this analysis, we found that the sequences from the 2 groups were either identical to that of R. raoultii (GenBank accession no. DQ365803) or to that of R. aeschlimannii (GenBank accession no. HM050276) (TableTechnical AppendixFigure 2). We detected R. raoultii DNA in H. asiaticum (118/766, 15.4%) and D. nuttalli (830/1,418, 58.5%) ticks and R. aeschlimannii DNA from H. marginatum (160/198, 80.8%) and D. nuttalli (158/1,418, 11.1%) ticks. We did not detect rickettsial DNA in R. turanicus ticks (0/76, 0%).
Recently, human cases of R. raoultii infection have been reported in China, including northeastern Inner Mongolia (1,4). Potential vectors for R. raoultii are Dermacentor spp. ticks in Europe, Turkey, and northern Asia and Haemaphysalis spp. and Amblyomma sp. ticks in southern Asia (7,8). Other studies have identified Hyalomma spp., Rhipicephalus spp., and Amblyomma sp. ticks as potential vectors for R. aeschlimannii (7,8); human cases of R. aeschlimannii infection have been reported in Italy and Morocco (7,9). We detected R. raoultii in H. asiaticum as well as D. nuttalliticks, but in Mongolia, R. raoultii has been detected only in D. nuttalli ticks, and not H. asiaticum ticks (10). We identified D. nuttalli ticks as another potential vector for R. aeschlimannii. Our work contributes to the knowledge of the epidemiology, clinical characteristics, and known tick vectors associated with R. raoultii and R. aeschlimannii.
Dr. Gaowa is an associate professor in Inner Mongolia Key Laboratory of Tick-Borne Zoonosis, Department of Medicine, College of Hetao, Bayan Nur, Inner Mongolia, China. Her primary research interests are molecular biology, ecology, and epidemiology of zoonotic parasites, especially tickborne pathogens.
 Top

Acknowledgments

We thank Asaka Ikegaya for providing Rickettsia japonica antigen slides.
This work was supported by grants from the National Natural Science Foundation of China (nos. 31660032 and 31660044); Natural Science Foundation of Inner Mongolia (2015BS0331); Bayan Nur Science and Technology Project from Bayan Nur Bureau for Science and Technology; Inner Mongolia Higher Education Science and Technology Project (NJZY261); and Startup Fund for Talented Scholar in College of Hetao (to Gaowa). The research was partially supported by the Research Program on Emerging and Re-emerging Infectious Diseases from Japan Agency for Medical Research and Development (AMED) to N.O., H.K., and S.A.
 Top

References

  1. Jia  NZheng  YCMa  LHuo  QBNi  XBJiang  BGet al. Human infections with Rickettsia raoultii, China. Emerg Infect Dis2014;20:8668DOIPubMed
  2. Fang  LQLiu  KLi  XLLiang  SYang  YYao  HWet al. Emerging tick-borne infections in mainland China: an increasing public health threat. Lancet Infect Dis2015;15:146779DOIPubMed
  3. Li  HCui  XMCui  NYang  ZDHu  JGFan  YDet al. Human infection with novel spotted fever group Rickettsia genotype, China, 2015. Emerg Infect Dis2016;22:21536DOIPubMed
  4. Li  HZhang  PHHuang  YDu  JCui  NYang  ZDet al. Isolation and identification of Rickettsia raoultii in human cases: a surveillance study in 3 medical centers in China. Clin Infect Dis2018;66:110915DOIPubMed
  5. Li  MTSun  GQZhang  WYJin  ZModel-based evaluation of strategies to control brucellosis in China. Int J Environ Res Public Health2017;14:295DOIPubMed
  6. Gaowa Ohashi  NAochi  MWuritu  DWu Yoshikawa  Yet al. Rickettsiae in ticks, Japan, 2007–2011. Emerg Infect Dis2013;19:33840DOIPubMed
  7. Parola  PPaddock  CDSocolovschi  CLabruna  MBMediannikov  OKernif  Tet al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26:657–702. 1
  8. Karasartova  DGureser  ASGokce  TCelebi  BYapar  DKeskin  Aet al. Bacterial and protozoal pathogens found in ticks collected from humans in Corum province of Turkey. PLoS Negl Trop Dis2018;12:e0006395DOIPubMed
  9. Tosoni  AMirijello  ACiervo  AMancini  FRezza  GDamiano  Fet al.Internal Medicine Sepsis Study GroupHuman Rickettsia aeschlimannii infection: first case with acute hepatitis and review of the literature. Eur Rev Med Pharmacol Sci2016;20:26303.PubMed
  10. Boldbaatar  BJiang  RRvon Fricken  MELkhagvatseren  SNymadawa  PBaigalmaa  Bet al. Distribution and molecular characteristics of rickettsiae found in ticks across Central Mongolia.Parasit Vectors2017;10:61DOIPubMed
 Top

Table

 Top
Cite This Article

DOI: 10.3201/eid2411.162094
Original Publication Date: 9/24/2018

No hay comentarios:

Publicar un comentario