Journal of NeuroEngineering and Rehabilitation
How a diverse research ecosystem has generated new rehabilitation technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers
- David J. Reinkensmeyer,
- Sarah Blackstone,
- Cathy Bodine,
- John Brabyn,
- David Brienza,
- Kevin Caves,
- Frank DeRuyter,
- Edmund Durfee,
- Stefania Fatone,
- Geoff Fernie,
- Steven Gard,
- Patricia Karg,
- Todd A. Kuiken,
- Gerald F. Harris,
- Mike Jones,
- Yue Li,
- Jordana Maisel,
- Michael McCue,
- Michelle A. Meade,
- Helena Mitchell,
- Tracy L. Mitzner,
- James L. Patton,
- Philip S. Requejo,
- James H. Rimmer,
- Wendy A. Rogers,
- W. Zev Rymer,
- Jon A. Sanford,
- Lawrence Schneider,
- Levin Sliker,
- Stephen Sprigle,
- Aaron Steinfeld,
- Edward Steinfeld,
- Gregg Vanderheiden,
- Carolee Winstein,
- Li-Qun Zhang and
- Thomas Corfman
Journal of NeuroEngineering and Rehabilitation201714:109
© The Author(s). 2017
Received: 18 November 2016
Accepted: 26 October 2017
Published: 6 November 2017
Abstract
Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program.
Keywords
Rehabilitation engineeringDisabilityTechnology
No hay comentarios:
Publicar un comentario