miércoles, 21 de septiembre de 2016

Distinct Zika Virus Lineage in Salvador, Bahia, Brazil - Volume 22, Number 10—October 2016 - Emerging Infectious Disease journal - CDC

Distinct Zika Virus Lineage in Salvador, Bahia, Brazil - Volume 22, Number 10—October 2016 - Emerging Infectious Disease journal - CDC



Volume 22, Number 10—October 2016

Dispatch

Distinct Zika Virus Lineage in Salvador, Bahia, Brazil

Samia N. Naccache1, Julien Thézé1, Silvia I. Sardi, Sneha Somasekar, Alexander L. Greninger, Antonio C. Bandeira, Gubio S. Campos, Laura B. Tauro, Nuno R. Faria, Oliver G. Pybus, and Charles Y. ChiuComments to Author 
Author affiliations: University of California San Francisco, San Francisco, California, USA (S.N. Naccache, S. Somasekar, C.Y. Chiu)University of California San Francisco–Abbott Viral Diagnostics and Discovery Center, San Francisco (S.N. Naccache, S. Somasekar, C.Y. Chiu)University of Oxford, Oxford, UK (J. Thézé, N.R. Faria, O.G. Pybus)Federal University of Bahia, Salvador, Brazil (S.I. Sardi, G.S. Campos)University of Washington, Seattle, Washington, USA (A.L. Greninger)Hospital Alianca, Salvador (A.C. Bandeira)Gonçalo Moniz Research Center–Oswaldo Cruz Foundation, Salvador (L.B. Tauro)Evandro Chagas Institute, Ananindeua, Brazil (N.R. Faria)

Abstract

Sequencing of isolates from patients in Bahia, Brazil, where most Zika virus cases in Brazil have been reported, resulted in 11 whole and partial Zika virus genomes. Phylogenetic analyses revealed a well-supported Bahia-specific Zika virus lineage, which indicates sustained Zika virus circulation in Salvador, Bahia’s capital city, since mid-2014.
Zika virus is an arthropodborne RNA virus primarily transmitted by mosquitoes of the species Aedes (1). The virus has 2 genotypes: African, found only in the continent of Africa; and Asian, associated with outbreaks in Southeast Asia, several Pacific islands, and, recently, the Americas (2). In May 2015, Brazil reported its first autochthonous cases of Zika virus infection, which occurred in northeast Brazil (3,4). As of June 30, 2016, all 27 federal states in Brazil had confirmed Zika virus transmission (http://www.paho.org/hq/index.php?option=com_docman&task=doc_view&Itemid=270&gid=35262&lang=en).
The rapid geographic expansion of Zika virus transmission and the virus’s association with microcephaly and congenital abnormalities (5) demand a rapid increase in molecular surveillance in areas that are most affected. Molecular surveillance is particularly relevant for regions where other mosquitoborne viruses, particularly dengue and chikungunya viruses, co-circulate with Zika virus (2); surveillance on the basis of clinical symptoms alone is highly inaccurate. Genetic characterization of circulating Zika virus strains can help determine the origin and potential spread of infection in travelers returning from Zika virus–endemic countries. Previous analyses have suggested that Zika virus was introduced in the Americas at least 1 year before the virus’s initial detection in Brazil (1). The state of Bahia, Brazil, reported most (93%) suspected Zika virus infections in Brazil during 2015 (2), including cases of Zika virus–associated fetal microcephaly (6); however, except for 1 complete genome, no genetic information from the region has been available (2,7). We report molecular epidemiologic findings resulting from 11 new complete and partial Zika virus genomes recovered from serum samples from patients at the Hospital Aliança in the city of Salvador in Bahia, Brazil.

The Study

Symptomatic patients with suspected Zika virus infection were enrolled in a research study approved by the Brazil Ministry of Health (Certificado de Apresentação para Apreciação Ética 45483115.0.0000.0046, no. 1159.184, Brazil). During April 2015–January 2016, acute Zika virus infection was diagnosed for 15 patients whose serum samples tested positive by a qualitative reverse transcription PCR (RT-PCR) by using primers targeting the nonstructural 5 gene (8). Clinical samples were retested for Zika virus positivity by using a separate quantitative RT-PCR (QuantiTect SYBR Green PCR kit; QIAGEN, Valencia, CA, USA) and primers targeting the envelope gene (9). Metagenomic next-generation sequencing libraries were constructed from serum RNA extracts, as described (10,11Technical Appendix[PDF - 408 KB - 5 pages]). Pathogen identification from metagenomic next-generation sequencing data was performed by using the Sequence-based Ultra-Rapid Pathogen Identification bioinformatics pipeline (12;http://chiulab.ucsf.edu/surpi/). Results of the metagenomic analyses and identification of co-infections with chikungunya virus are reported elsewhere (13).
For Zika virus genome sequencing, 2 isolates (Bahia07 and Bahia09; Table) with Zika virus titers >104 copies/mL generated sufficient viral metagenomic data for complete genome assembly. For the remaining samples with lower titers, metagenomic next-generation sequencing libraries were enriched for Zika virus sequencing by using xGen biotinylated lockdown capture probes (Integrated DNA Technologies, Redwood, CA, USA) designed to tile across all sequenced Zika virus genomes >10,000 nt in GenBank (http://www.ncbi.nlm.nih.gov/genbank) as of March 1, 2016. Capture probes were curated for redundancy at a 99% nt similarity cutoff. Enrichment was performed on the metagenomic libraries in pools of 8 libraries (including Zika virus–negative serum sample controls) by using the xGen lockdown probe protocol and the SeqCap EZ Hybridization and Wash Kit (Roche, Indianapolis, IN, USA). Eleven Zika virus genomes with >40% genome recovery (mean 69.4% ± 2.0%) were assembled (Table). Distribution of single nucleotide variants across the 11 recovered genomes exhibited distinct patterns (Technical Appendix[PDF - 408 KB - 5 pages] Figure 1), indicating that the assembled genomes were unlikely to result from cross-contamination by a single high-titer Zika virus sample.
Multiple sequence alignment was performed by using MAFFT version 7 (http://mafft.cbrc.jp/alignment/software/); maximum-likelihood (ML) and Bayesian phylogenetic inferences were determined by using PhyML version 3.0 (http://www.atgc-montpellier.fr/phyml/) and BEAST version 1.8.2 (http://beast.bio.ed.ac.uk/), respectively. The best-fit model was calculated by using jModelTest2 (https://github.com/ddarriba/jmodeltest2; details inTechnical Appendix[PDF - 408 KB - 5 pages]). Coding regions corresponding to the 11 complete or partial genomes from Bahia were aligned with all published and available near-complete Zika virus genomes and longer subgenomic regions (>1,500 nt) of the Asian genotype as of April 2016 (mean sequence size 8,402 nt with 1,652 distinct nucleotide site patterns). The ML phylogeny was reconstructed by using the best-fit general time-reversible nucleotide substitution model with a proportion of invariant sites (GTR+I). Statistical support for phylogenetic nodes was assessed by using a bootstrap approach with 1,000 bootstrap replicates. A Bayesian molecular clock phylogeny was estimated by using the best-fitting evolutionary model (2); specifically, a GTR+I substitution model with 3 components: a strict molecular clock, a Bayesian skyline coalescent prior, and a noninformative continuous time Markov chain reference prior for the molecular clock rate.
Thumbnail of Timeframe of Zika virus outbreaks in the Americas. A molecular clock phylogeny is shown with the Zika virus outbreak lineage estimated from complete and partial (>1,500 nt) coding region sequences. For visual clarity, 5 basal Southeast Asia sequences (Genbank accession nos. HQ23499 [Malaysia, 1966]; EU545988 [Micronesia, 2007]; KU681082 [Philippines, 2012]; JN860885 [Cambodia, 2010]; and KU681081 [Thailand, 2013]) are not displayed. Blue horizontal bars represent 95% Bayesian cre
Figure. Timeframe of Zika virus outbreaks in the Americas. A molecular clock phylogeny is shown with the Zika virus outbreak lineage estimated from complete and partial (>1,500 nt) coding region sequences. For...
The isolates from patients in Salvador clustered together within 1 strongly supported clade (posterior probability 1.00, bootstrap support 100%, Bahia clade C) (FigureTechnical Appendix[PDF - 408 KB - 5 pages] Figure 2). This support is notable; most Zika virus genomes in this clade are incomplete, and uncertainty is accounted for in phylogenetic inference. The tree topology accords with previous findings (2,4,5), and time to most recent common ancestor (TMRCA) of the epidemic in the Americas is similar to that previously estimated (2) (American epidemic clade A; Figure). The overall ML and molecular clock phylogenies exhibited many well-supported internal nodes with bootstrap support >60% and posterior probability >0.80 (FigureTechnical Appendix[PDF - 408 KB - 5 pages] Figure 2), although several nodes near the ancestor of clade A were less well supported.
The updated phylogenetic analyses, including the newly identified clade C, suggest that Zika virus was introduced in Bahia during March–September 2014. An isolate from Maranhão in northeastern Brazil (≈1,000 km from Bahia) is ancestral to the Bahia clade (posterior probability 1.00, bootstrap support 74%, northeastern Brazil clade B) (FigureTechnical Appendix[PDF - 408 KB - 5 pages] Figure 2). The TMRCA of clade B (comprising the Bahia clade and the Maranhão sequence) is estimated to be September 2013–April 2014, an early stage of the epidemic. This TMRCA is consistent with the hypothesis that Zika virus in the Americas originated in Brazil (2). A previously reported sequence from Bahia (6) clustered with an isolate from Belém in the state of Pará in northern Brazil, ≈3,000 km from Bahia (posterior probability 0.99, bootstrap support 81%) (FigureTechnical Appendix[PDF - 408 KB - 5 pages] Figure 2). The patient denied history of travel, suggesting that multiple Zika virus lineages may circulate in Bahia.

Conclusions

Our results suggest an early introduction and presence (mid-2014) of Zika virus in the Salvador region in Bahia, Brazil. Given the size of the cluster and statistical support for it, this lineage likely represents a large and sustained chain of transmission within Bahia state. Most cases of this Zika virus lineage clustered closely to a sequence from Maranhão, and we found evidence for an additional potential introduction to Bahia from Pará state. Consequently, Zika virus in Salvador during mid-2014 was likely introduced from other regions in Brazil rather than from outside the country. Current findings of Zika virus emergence in Bahia state during mid-2014 are consistent with first-trimester viral infection in pregnant women corresponding to the initial reported cases of fetal microcephaly, which began in January 2015 (5) and peaked in November 2015.
Broader sampling across Bahia is needed to determine whether the Salvador lineage (clade C) identified in this article comprises most Zika virus cases in the state. Brazil currently faces a major public health challenge from co-circulation of Zika, dengue, and chikungunya viruses (24,14,15). Additional molecular surveillance in the Americas and beyond is urgently needed to trace and predict transmission of Zika virus.
Dr. Naccache is a researcher at the University of California, San Francisco; her interests are genomic assay development for clinical infectious disease diagnosis and sequencing-based characterization of emerging viruses. Dr. Thézé is a postdoctoral researcher in computational biology at the University of Oxford, UK; he is interested in viral evolution, especially the spatiotemporal dynamics of pathogen spread.

Acknowledgments

We thank multiple researchers worldwide for permission to include their unpublished Zika virus genomes in our analysis.
This study was supported in part by Fundação de Amparo a Pesquisa do Estado da Bahia, the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013)/ERC grant agreement no. 614725-PATHPHYLODYN, National Institutes of Health grants R01-HL105704 and R21-AI120977 (C.Y.C.), and a viral discovery award from Abbott Laboratories, Inc. (C.Y.C.). This study was made possible by the generous support of the American people through the United States Agency for International Development Emerging Pandemic Threats Program-2 PREDICT-2 (Cooperative Agreement No. AID-OAA-A-14-00102).

References

  1. Musso DGubler DJZika virus. Clin Microbiol Rev2016;29:487524DOIPubMed
  2. Faria NRAzevedo Rdo SKraemer MUSouza RCunha MSHill SCZika virus in the Americas: early epidemiological and genetic findings. Science.2016;352:3459DOIPubMed
  3. Campos GSBandeira ACSardi SIZika virus outbreak, Bahia, Brazil. Emerg Infect Dis2015;21:18856DOIPubMed
  4. Zanluca CMelo VCMosimann ALSantos GISantos CNLuz KFirst report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz2015;110:56972DOIPubMed
  5. Rubin EJGreene MFBaden LRZika virus and microcephaly. N Engl J Med2016;374:9845DOIPubMed
  6. Kleber de Oliveira WCortez-Escalante JDe Oliveira WTdo Carmo GMHenriques CMCoelho GEIncrease in reported prevalence of microcephaly in infants born to women living in areas with confirmed Zika virus transmission during the first trimester of pregnancy—Brazil, 2015.MMWR Morb Mortal Wkly Rep2016;65:2427DOIPubMed
  7. Giovanetti MFaria NRNunes MRde Vasconcelos JMLourenço JRodrigues SGZika virus complete genome from Salvador, Bahia, Brazil. Infect Genet Evol2016;41:1425DOIPubMed
  8. Balm MNLee CKLee HKChiu LKoay ESTang JWA diagnostic polymerase chain reaction assay for Zika virus. J Med Virol2012;84:15015.DOIPubMed
  9. Lanciotti RSKosoy OLLaven JJVelez JOLambert AJJohnson AJGenetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis2008;14:12329DOIPubMed
  10. Chiu CYBres VYu GKrysztof DNaccache SNLee DGenomic assays for identification of chikungunya virus in blood donors, Puerto Rico, 2014.Emerg Infect Dis2015;21:140913DOIPubMed
  11. Greninger ALNaccache SNMessacar KClayton AYu GSomasekar SA novel outbreak enterovirus D68 strain associated with acute flaccid myelitis cases in the USA (2012–14): a retrospective cohort study. Lancet Infect Dis2015;15:67182DOIPubMed
  12. Naccache SNFederman SVeeraraghavan NZaharia MLee DSamayoa EA cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res2014;24:118092DOIPubMed
  13. Sardi SISomasekar SNaccache SNBandeira ACTauro LBCampos GSCo-infections from Zika and chikungunya virus in Bahia, Brazil identified by metagenomic next-generation sequencing. J Clin MicrobiolIn press 2016.
  14. Kraemer MUSinka MEDuda KAMylne AQShearer FMBarker CMThe global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. eLife2015;4:e08347DOIPubMed
  15. Nunes MRFaria NRde Vasconcelos JMGolding NKraemer MUde Oliveira LFEmergence and potential for spread of chikungunya virus in Brazil.BMC Med2015;13:102DOIPubMed

Figure

Table

Technical Appendix

Suggested citation for this article: Naccache SN, Thézé J, Sardi SI, Somasekar S, Greninger AL, Bandeira AC, et al. Distinct Zika virus lineage in Salvador, Bahia, Brazil. Emerg Infect Dis. 2016 Oct [date cited]. http://dx.doi.org/10.3201/eid2210.160663
DOI: 10.3201/eid2210.160663


1These first authors contributed equally to this article.

No hay comentarios:

Publicar un comentario