jueves, 19 de marzo de 2015

Influenza A(H7N9) Virus Transmission between Finches and Poultry - Volume 21, Number 4—April 2015 - Emerging Infectious Disease journal - CDC

FULL-TEXT ►

Influenza A(H7N9) Virus Transmission between Finches and Poultry - Volume 21, Number 4—April 2015 - Emerging Infectious Disease journal - CDC



Volume 21, Number 4—April 2015

Research

Influenza A(H7N9) Virus Transmission between Finches and Poultry

Jeremy C. Jones, Stephanie Sonnberg, Richard J. Webby, and Robert G. WebsterComments to Author 
Author affiliations: St. Jude Children’s Research Hospital, Memphis, Tennessee, USA

Abstract

Low pathogenicity avian influenza A(H7N9) virus has been detected in poultry since 2013, and the virus has caused >450 infections in humans. The mode of subtype H7N9 virus transmission between avian species remains largely unknown, but various wild birds have been implicated as a source of transmission. H7N9 virus was recently detected in a wild sparrow in Shanghai, China, and passerine birds, such as finches, which share space and resources with wild migratory birds, poultry, and humans, can be productively infected with the virus. We demonstrate that interspecies transmission of H7N9 virus occurs readily between society finches and bobwhite quail but only sporadically between finches and chickens. Inoculated finches are better able to infect naive poultry than the reverse. Transmission occurs through shared water but not through the airborne route. It is therefore conceivable that passerine birds may serve as vectors for dissemination of H7N9 virus to domestic poultry.
In spring 2013, novel avian influenza A(H7N9) viruses emerged in eastern China (1). These viruses are reassortants of subtype H7 and H9N2 viruses from wild birds and poultry (2,3) and were detected in humans and subsequently in chickens, ducks, pigeons, water, and soil at bird markets (4,5). H7N9 virus does not induce clinical signs in poultry (6), and genetic analyses show a monobasic cleavage site in the hemagglutinin (HA) protein (1); H7N9 virus is therefore classified as a low pathogenicity avian influenza virus (LPAIV). However, the virus can infect humans and cause severe disease (7). Human infection with H7N9 virus was first reported in China in March 2013 (8). By October 2, 2014, a total of 453 confirmed cases and 175 associated deaths had been reported (http://www.who.int/influenza/human_animal_interface/influenza_h7n9/riskassessment_h7n9_2Oct14.pdf?ua=1). Despite their avian genetic background, some H7N9 viruses have HA and polymerase protein mutations that confer a replication advantage in mammals (1). Human infection has been associated with exposure to poultry or live poultry markets (7,9); market closings likely contributed to infection declines in mid-2013 (10). Nevertheless, H7N9 virus persists in poultry, and human infections surged in the late 2013, demonstrating that this virus is an ongoing public health threat (11).
The polymerase acidic (PA) and polymerase basic 2 genes derived from A/Anhui/1/2013 (H7N9)–like virus are homologous to those from A/brambling/Beijing/16/2012 (H9N2) (1,8), a strain isolated from a brambling (Fringilla montifringilla, a small passerine bird). In addition, during surveillance in 2013, the influenza strain A/tree sparrow/Shanghai/01/2013 (H7N9) was identified in a tree sparrow (Passer montanus, a passerine bird) found at a site where migratory and local birds congregate (12).
We previously showed that society finches (Lonchura striata domestica), zebra finches (Taeniopygia guttata), sparrows (P. domesticus), and parakeets (Melopsittacus undulates) are susceptible to H7N9 virus and shed virus into water (13). The birds used in those experiments are examples of passerine and psittacine birds, which include individual species that are migratory, peridomestic, and domesticated. The interaction of wild birds, humans, and domesticated animals may contribute to the maintenance and spread of H7N9 virus. To further address the contribution of passerines to the ecology of H7N9 virus, we modeled potential interspecies virus transmission by using society finches (a passerine bird) and poultry (bobwhite quail and chickens) and determined the route of virus transmission.

Dr. Jones is a postdoctoral fellow at St. Jude Children’s Research Hospital. His research interests include the host response to influenza viruses, emergence of novel influenza virus variants, and zoonotic transmission of influenza between species.

Acknowledgments

We thank Lisa Kercher, Beth Little, David Carey, Kimberly Friedman, and James Knowles for experimental support and administrative assistance and Huachen Zhu and Yi Guan for providing virus isolates.
This work was supported by the National Institute of Allergy and Infectious Diseases, National Institutes of Health (contract no. HHSN272201400006C), and by the American Lebanese Syrian Associated Charities.

References

  1. Kageyama TFujisaki STakashita EXu HYamada SUchida YGenetic analysis of novel avian A(H7N9) influenza viruses isolated from patients in China, February to April 2013. Euro Surveill2013;18:20453 .PubMed
  2. Wu ASu CWang DPeng YLiu MHua SSequential reassortments underlie diverse influenza H7N9 genotypes in China. Cell Host Microbe.2013;14:44652 . DOIPubMed
  3. Wang DYang LGao RZhang XTan YWu AGenetic tuning of the novel avian influenza A(H7N9) virus during interspecies transmission, China, 2013. Euro Surveill2014;19:20836 .PubMed
  4. Shi JZDeng GHLiu PHZhou JPGuan LZLi WHIsolation and characterization of H7N9 viruses from live poultry markets—implication of the source of current H7N9 infection in humans. Chin Sci Bull2013;58:185763DOI
  5. Lam TTWang JShen YZhou BDuan LCheung CLThe genesis and source of the H7N9 influenza viruses causing human infections in China.Nature2013;502:2414 . DOIPubMed
  6. Pantin-Jackwood MJMiller PJSpackman ESwayne DESusta LCosta-Hurtado MRole of poultry in the spread of novel H7N9 influenza virus in China. J Virol2014;88:538190 . DOIPubMed
  7. Yu HCowling BJFeng LLau EHLiao QTsang TKHuman infection with avian influenza A H7N9 virus: an assessment of clinical severity. Lancet.2013;382:13845 . DOIPubMed
  8. Liu DShi WShi YWang DXiao HLi WOrigin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet2013;381:192632 . DOIPubMed
  9. Lee SSWong NSLeung CCExposure to avian influenza H7N9 in farms and wet markets. Lancet2013;381:1815 . DOIPubMed
  10. Yu HWu JTCowling BJLiao QFang VJZhou SEffect of closure of live poultry markets on poultry-to-person transmission of avian influenza A H7N9 virus: an ecological study. Lancet2014;383:5418 . DOIPubMed
  11. Tu CFu LTang RHe TChen JFang YThe first case of avian influenza A (H7N9) virus occurring in the autumn season, China. Am J Infect Control.2014;42:2123 . DOIPubMed
  12. Zhao BZhang XZhu WTeng ZYu XGao YNovel avian influenza A(H7N9) virus in tree sparrow, Shanghai, China, 2013. Emerg Infect Dis.2014;20:8503 . DOIPubMed
  13. Jones JCSonnberg SKocer ZAShanmuganatham KSeiler PShu YPossible role of songbirds and parakeets in transmission of influenza A(H7N9) virus to humans. Emerg Infect Dis2014;20:3805 . DOIPubMed
  14. Watanabe TKiso MFukuyama SNakajima NImai MYamada SCharacterization of H7N9 influenza A viruses isolated from humans. Nature.2013;501:5515 . DOIPubMed
  15. Belser JAGustin KMPearce MBMaines TRZeng HPappas CPathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice.Nature2013;501:5569 . DOIPubMed
  16. Kreijtz JHKroeze EJStittelaar KJde Waal Lvan Amerongen Gvan Trierum SLow pathogenic avian influenza A(H7N9) virus causes high mortality in ferrets upon intratracheal challenge: a model to study intervention strategies. Vaccine2013;31:49959 . DOIPubMed
  17. Baranovich TBurnham AJMarathe BMArmstrong JGuan YShu YThe neuraminidase inhibitor oseltamivir is effective against A/Anhui/1/2013 (H7N9) influenza virus in a mouse model of acute respiratory distress syndrome. J Infect Dis2014;209:134353 . DOIPubMed
  18. Zhu HWang DKelvin DJLi LZheng ZYoon SWInfectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science2013;341:1836 . DOIPubMed
  19. Kimble BNieto GRPerez DRCharacterization of influenza virus sialic acid receptors in minor poultry species. Virol J2010;7:365 .DOIPubMed
  20. Brown JDSwayne DECooper RJBurns REStallknecht DEPersistence of H5 and H7 avian influenza viruses in water. Avian Dis2007;51:2859 .DOIPubMed
  21. Stallknecht DEGoekjian VHWilcox BRPoulson RLBrown JDAvian influenza virus in aquatic habitats: what do we need to learn? Avian Dis.2010;54:4615 . DOIPubMed
  22. Khalenkov ALaver WGWebster RGDetection and isolation of H5N1 influenza virus from large volumes of natural water. J Virol Methods.2008;149:1803 . DOIPubMed
  23. Zhang HLi YChen JChen QChen ZPerpetuation of H5N1 and H9N2 avian influenza viruses in natural water bodies. J Gen Virol.2014;95:14305 . DOIPubMed
  24. Horimoto TKawaoka YPandemic threat posed by avian influenza A viruses. Clin Microbiol Rev2001;14:12949 . DOIPubMed
  25. Rohani PBreban RStallknecht DEDrake JMEnvironmental transmission of low pathogenicity avian influenza viruses and its implications for pathogen invasion. Proc Natl Acad Sci U S A2009;106:103659 . DOIPubMed
  26. Webster RGBean WJGorman OTChambers TMKawaoka YEvolution and ecology of influenza A viruses. Microbiol Rev1992;56:15279.PubMed
  27. Claes GMarche SDewulf JVan Den Berg TLambrecht BAn experimental model to analyse the risk of introduction of a duck-originated H5 low-pathogenic avian influenza virus in poultry through close contact and contaminative transmission. Epidemiol Infect2014;142:183647 .DOIPubMed
  28. Forrest HLKim JKWebster RGVirus shedding and potential for interspecies waterborne transmission of highly pathogenic H5N1 influenza virus in sparrows and chickens. J Virol2010;84:371820 . DOIPubMed
  29. Yamamoto YNakamura KYamada MMase MPathogenesis in Eurasian tree sparrows inoculated with H5N1 highly pathogenic avian influenza virus and experimental virus transmission from tree sparrows to chickens. Avian Dis2013;57:20513 . DOIPubMed
  30. Ku KBPark EHYum JKim HMKang YMKim JCTransmissibility of novel H7N9 and H9N2 avian influenza viruses between chickens and ferrets.Virology2014;450–451:31623 . DOIPubMed
  31. Zhong LWang XLi QLiu DChen HZhao MMolecular mechanism of the airborne transmissibility of H9N2 avian influenza A viruses in chickens. J Virol2014;88:956878 . DOIPubMed
  32. Spekreijse DBouma AKoch GStegeman JAAirborne transmission of a highly pathogenic avian influenza virus strain H5N1 between groups of chickens quantified in an experimental setting. Vet Microbiol2011;152:8895 . DOIPubMed
  33. Liu MHe SWalker DZhou NPerez DRMo BThe influenza virus gene pool in a poultry market in South Central China. Virology.2003;305:26775 . DOIPubMed
  34. Thontiravong AKitikoon PWannaratana STantilertcharoen RTuanudom RPakpinyo SQuail as a potential mixing vessel for the generation of new reassortant influenza A viruses. Vet Microbiol2012;160:30513 . DOIPubMed
  35. Makarova NVOzaki HKida HWebster RGPerez DRReplication and transmission of influenza viruses in Japanese quail. Virology2003;310:815DOIPubMed
  36. Bertran KDolz RMajo NPathobiology of avian influenza virus infection in minor gallinaceous species: a review. Avian Pathol2014;43:925 .DOIPubMed
  37. Wan HPerez DRQuail carry sialic acid receptors compatible with binding of avian and human influenza viruses. Virology2006;346:27886 .DOIPubMed
  38. Perez DRLim WSeiler JPYi GPeiris MShortridge KFRole of quail in the interspecies transmission of H9 influenza A viruses: molecular changes on HA that correspond to adaptation from ducks to chickens. J Virol2003;77:314856 . DOIPubMed
  39. Root JJBentler KTShriner SAMooers NLVanDalen KKSullivan HJEcological routes of avian influenza virus transmission to a common mesopredator: an experimental evaluation of alternatives. PLoS ONE2014;9:e102964 . DOIPubMed
  40. Belser JABridges CBKatz JMTumpey TMPast, present, and possible future human infection with influenza virus A subtype H7. Emerg Infect Dis.2009;15:85965 . DOIPubMed

Figures

Tables

Suggested citation for this article: Jones JC, Sonnberg S, Webby RJ, Webster RG. Influenza A(H7N9) virus transmission between finches and poultry. Emerg Infect Dis. 2015 Apr [date cited]. http://dx.doi.org/10.3201/eid2104.141703
DOI: 10.3201/eid2104.141703

No hay comentarios:

Publicar un comentario