jueves, 19 de marzo de 2015

Sequence Variability and Geographic Distribution of Lassa Virus, Sierra Leone - Volume 21, Number 4—April 2015 - Emerging Infectious Disease journal - CDC


Sequence Variability and Geographic Distribution of Lassa Virus, Sierra Leone - Volume 21, Number 4—April 2015 - Emerging Infectious Disease journal - CDC

Volume 21, Number 4—April 2015


Sequence Variability and Geographic Distribution of Lassa Virus, Sierra Leone

Tomasz A. Leski1Comments to Author , Michael G. Stockelman1, Lina M. Moses, Matthew Park, David A. Stenger, Rashid Ansumana, Daniel G. Bausch, and Baochuan Lin
Author affiliations: Naval Research Laboratory, Washington, DC, USA (T.A. Leski, M.G. Stockelman, D.A. Stenger, B. Lin)Tulane University, New Orleans, Louisiana, USA (L.M. Moses)Tulane School of Public Health and Tropical Medicine, New Orleans (L.M. Moses, D.G Bausch), Thomas Jefferson High School, Alexandria, Virginia, USA (M. Park)Mercy Hospital Research Laboratory, Bo, Sierra Leone (R. Ansumana)Liverpool School of Tropical Medicine, Liverpool, UK (R. Ansumana)Njala University, Bo (R. Ansumana)


Lassa virus (LASV) is endemic to parts of West Africa and causes highly fatal hemorrhagic fever. The multimammate rat (Mastomys natalensis) is the only known reservoir of LASV. Most human infections result from zoonotic transmission. The very diverse LASV genome has 4 major lineages associated with different geographic locations. We used reverse transcription PCR and resequencing microarrays to detect LASV in 41 of 214 samples from rodents captured at 8 locations in Sierra Leone. Phylogenetic analysis of partial sequences of nucleoprotein (NP), glycoprotein precursor (GPC), and polymerase (L) genes showed 5 separate clades within lineage IV of LASV in this country. The sequence diversity was higher than previously observed; mean diversity was 7.01% for nucleoprotein gene at the nucleotide level. These results may have major implications for designing diagnostic tests and therapeutic agents for LASV infections in Sierra Leone.
Lassa fever (LF) belongs to a group of viral hemorrhagic fevers characterized by a febrile syndrome and high case-fatality rates (1). LF differs from most viral hemorrhagic fevers in that it is endemic to a large geographic area of sub-Saharan Africa. Human cases of LF have been reported in (or imported from) Guinea, Sierra Leone, Liberia, Mali, Burkina Faso, and Nigeria; however, LF outbreaks seem to be restricted to Guinea, Sierra Leone, Liberia (the Mano River Union region), and Nigeria (24). In some areas of Sierra Leone and Guinea, more than half of the population has antibodies against Lassa virus (LASV; family Arenaviridae), the etiologic agent of LF (5,6). According to various estimates, 300,000–500,000 cases of LF result in 5,000–10,000 deaths annually in West Africa (6,7). An analysis based on seroepidemiologic data suggested that the number of cases might be much higher, reaching 3 million cases and 67,000 fatalities per year (8). Overall, the population at risk might include as many as 200 million persons living in a large swath of West Africa from Senegal to Nigeria and beyond (4).
LASV can cause infection in the multimammate rat (Mastomys natalensis), a natural host and reservoir of this pathogen (9,10). The multimammate rat is a commensal rodent ubiquitous in Africa (11,12). Although the routes of LASV infection are poorly characterized, humans probably get infected by eating contaminated food (13), by inhaling virus-contaminated aerosols (14), or while butchering infected rat meat (15). Person-to-person transmission of LASV is well documented, mostly in the form of nosocomial outbreaks (13).
Like other arenaviruses, LASV is an enveloped virus with a bisegmented single-stranded RNA genome encoding 4 proteins using an ambisense coding strategy (16). The small segment contains genes for the glycoprotein precursor (GPC) and nucleoprotein (NP), which serves as the main viral capsid protein. The large segment encodes the small zinc-binding protein (Z), which contains a RING motif, and another gene (L) containing the RNA-dependent RNA polymerase domain.
Complete genome sequences are available for several LASV strains, as are a considerable number of partial sequences from isolates originating from humans and rodents (1720). Their analysis revealed the existence of high sequence diversity (up to 27% nt) and 4 major lineages of LASV, which correlate with geographic location (17). Lineages I, II, and III, and the greatest diversity of LASV strains, were found among isolates from Nigeria, whereas strains from Guinea, Sierra Leone, and Liberia seemed to be more closely related and belong exclusively to lineage IV. Sequence of the AV strain (21) and recently published sequences from rodent LASV isolates from Mali (18) suggest the existence of an additional clade (proposed as lineage V) (22). LASV sequences of isolates from humans and rodents are found interspersed throughout the phylogenetic tree, which is consistent with the notion that human cases typically result from transmission from rodents (17).
The high degree of sequence divergence of LASV genomes is a major problem affecting the development of molecular and immune-based diagnostic technologies, vaccines, and possibly antiviral drugs (13,16,17,2325). Forty-seven unique partial LASV sequences from Sierra Leone were available in GenBank at the time of this analysis, which included fragments of NP (27 sequences), GPC (9 sequences), L (9 sequences), and Z (2 sequences) genes plus full sequences of small and large segments of 2 strains—Josiah and NL. Most of these sequences are from isolates collected >30 years ago; only 2 more recent sequences (GPC and L gene fragments) from strain SL06-2057 were isolated in 2006 (17,19).
To fill this gap, we investigated the sequence diversity of strains circulating among small rodents captured in peridomestic settings in Sierra Leone. In 2014, we screened 214 samples collected during 2009 from several species of rodents trapped in villages where LF was reported in humans. We used diagnostic reverse transcription PCR (RT-PCR) and high-density resequencing microarrays to detect LASV and amplify fragments of NP, GPC, and L genes. The obtained amplicons were sequenced and compared with previously published sequences from Sierra Leone to obtain a more complete and updated picture of the strains circulating in this country.

Dr. Leski is a research biologist at the Center for Bio/Molecular Science and Engineering at the Naval Research Laboratory. His research interests include the development and application of molecular diagnostics for pathogen detection and tracking the spread of antimicrobial resistance determinants in bacterial pathogens.


We thank Benjamin Kirkup and Zheng Wang for their critical evaluation of this manuscript.
Funding for this project was provided by the Office of Naval Research. M.P. was a Science and Engineering Apprenticeship Program (SEAP) summer intern supported by the American Society for Engineering Education as part of the Office of Naval Research, SEAP, at the Naval Research Laboratory.


  1. Frame JDBaldwin JM JrGocke DJTroup JMLassa fever, a new virus disease of man from West Africa. I. Clinical description and pathological findings. Am J Trop Med Hyg1970;19:6706 .PubMed
  2. Sogoba NFeldmann HSafronetz DLassa fever in West Africa: evidence for an expanded region of endemicity. Zoonoses Public Health.2012;59(Suppl 2):437 . DOIPubMed
  3. Macher AMWolfe MSHistorical Lassa fever reports and 30-year clinical update. Emerg Infect Dis2006;12:8357 . DOIPubMed
  4. Fichet-Calvet ERogers DJRisk maps of Lassa fever in West Africa. PLoS Negl Trop Dis2009;3:e388 . DOIPubMed
  5. Lukashevich ISClegg JCSidibe KLassa virus activity in Guinea: distribution of human antiviral antibody defined using enzyme-linked immunosorbent assay with recombinant antigen. J Med Virol1993;40:2107 . DOIPubMed
  6. McCormick JBWebb PAKrebs JWJohnson KMSmith ESA prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis.1987;155:43744 . DOIPubMed
  7. McCormick JB. Lassa fever. In: Saluzzo JF, Dodet B, editors. Emergence and control of rodent-borne viral diseases. Amsterdam: Elsevier; 1999. p. 177–95.
  8. Richmond JKBaglole DJLassa fever: epidemiology, clinical features, and social consequences. BMJ2003;327:12715 . DOIPubMed
  9. Monath TPNewhouse VFKemp GESetzer HWCacciapuoti ALassa virus isolation from Mastomys natalensis rodents during an epidemic in Sierra Leone. Science1974;185:2635 . DOIPubMed
  10. Walker DHWulff HLange JVMurphy FAComparative pathology of Lassa virus infection in monkeys, guinea-pigs, and Mastomys natalensis. Bull World Health Organ1975;52:52334 .PubMed
  11. Smit Avan der Bank HFalk Tde Castro ABiochemical genetic markers to identify two morphologically similar South African Mastomys species (RodentiaMuridae). Biochem Syst Ecol2001;29:2130 . DOIPubMed
  12. Rosevear DR. Muridae: typical rats & mice, wood mice, fat mice, swamp rats. In: Rosevear DR, editor. Rodents of West Africa. London: Trustees of the British Museum (Natural History); 1969. p. 227–496.
  13. Günther SLenz OLassa virus. Crit Rev Clin Lab Sci2004;41:33990 . DOIPubMed
  14. Peters CJJahrling PBLiu CTKenyon RHMcKee KT JrBarrera Oro JGExperimental studies of arenaviral hemorrhagic fevers. Curr Top Microbiol Immunol1987;134:568 . DOIPubMed
  15. Ter Meulen JLukashevich ISidibe KInapogui AMarx MDorlemann AHunting of peridomestic rodents and consumption of their meat as possible risk factors for rodent-to-human transmission of Lassa virus in the Republic of Guinea. Am J Trop Med Hyg1996;55:6616 .PubMed
  16. Lukashevich ISalvato MSLassa virus genome. Curr Genomics2006;7:35179DOI
  17. Bowen MDRollin PEKsiazek TGHustad HLBausch DGDemby AHGenetic diversity among Lassa virus strains. J Virol2000;74:69927004 .DOIPubMed
  18. Safronetz DSogoba NLopez JEMaiga ODahlstrom EZivcec MGeographic distribution and genetic characterization of Lassa virus in sub-Saharan Mali. PLoS Negl Trop Dis2013;7:e2582 . DOIPubMed
  19. Ehichioya DUHass MBecker-Ziaja BEhimuan JAsogun DAFichet-Calvet ECurrent molecular epidemiology of Lassa virus in Nigeria. J Clin Microbiol2011;49:115761 . DOIPubMed
  20. Lecompte EFichet-Calvet EDaffis SKoulemou KSylla OKourouma FMastomys natalensis and Lassa fever, West Africa. Emerg Infect Dis.2006;12:19714 . DOIPubMed
  21. Günther SEmmerich PLaue TKuhle OAsper MJung AImported Lassa fever in Germany: molecular characterization of a new Lassa virus strain.Emerg Infect Dis2000;6:46676 . DOIPubMed
  22. Günther SWeisner BRoth AGrewing TAsper MDrosten CLassa fever encephalopathy: Lassa virus in cerebrospinal fluid but not in serum. J Infect Dis2001;184:3459 . DOIPubMed
  23. Trappier SGConaty ALFarrar BBAuperin DDMcCormick JBFisher-Hoch SPEvaluation of the polymerase chain reaction for diagnosis of Lassa virus infection. Am J Trop Med Hyg1993;49:21421 .PubMed
  24. Olschläger SLelke MEmmerich PPanning MDrosten CHass MImproved detection of Lassa virus by reverse transcription–PCR targeting the 5′ region of S RNA. J Clin Microbiol2010;48:200913 . DOIPubMed
  25. Demby AHChamberlain JBrown DWClegg CSEarly diagnosis of Lassa fever by reverse transcription–PCR. J Clin Microbiol1994;32:2898903.PubMed
  26. Mills JNChilds JEKsiazek TGPeters CJWallis MV. Methods for trapping and sampling small mammals for virologic testing. Atlanta: US Department of Health and Human Services; 1995.
  27. Lecompte EBrouat CDuplantier J-MGalan MGranjon LLoiseau AMolecular identification of four cryptic species of Mastomys (Rodentia, Murinae). Biochem Syst Ecol2005;33:6819DOI
  28. Vieth SDrosten CLenz OVincent MOmilabu SHass MRT-PCR assay for detection of Lassa virus and related Old World arenaviruses targeting the L gene. Trans R Soc Trop Med Hyg2007;101:125364 . DOIPubMed
  29. Leski TALin BMalanoski APWang ZLong NCMeador CETesting and validation of high density resequencing microarray for broad range biothreat agents detection. PLoS ONE2009;4:e6569 . DOIPubMed
  30. Metzgar DMyers CARussell KLFaix DBlair PJBrown JSingle assay for simultaneous detection and differential identification of human and avian influenza virus types, subtypes, and emergent variants. PLoS ONE2010;5:e8995 . DOIPubMed
  31. Tamura KStecher GPeterson DFilipski AKumar SMEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol2013;30:27259 .DOIPubMed
  32. Huelsenbeck JPRonquist FMRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics2001;17:7545 . DOIPubMed
  33. Vieth STorda AEAsper MSchmitz HGunther SSequence analysis of L RNA of Lassa virus. Virology2004;318:15368 . DOIPubMed
  34. Lalis ALeblois RLecompte EDenys CTer Meulen JWirth TThe impact of human conflict on the genetics of Mastomys natalensis and Lassa virus in West Africa. PLoS ONE2012;7:e37068 . DOIPubMed
  35. ter Meulen JLenz OKoivogui LMagassouba NKaushik SKLewis RShort communication: Lassa fever in Sierra Leone: UN peacekeepers are at risk. Trop Med Int Health2001;6:834 . DOIPubMed
  36. Shaffer JGGrant DSSchieffelin JSBoisen MLGoba AHartnett JNLassa fever in post-conflict Sierra Leone. PLoS Negl Trop Dis2014;8:e2748 .DOIPubMed



Technical Appendix

Suggested citation for this article: Leski TA, Stockelman MG, Moses LM, Park M, Stenger DA, Ansumana R, et al. Sequence variability and geographic distribution of Lassa virus, Sierra Leone. Emerg Infect Dis [Internet]. 2015 Apr [date cited]. http://dx.doi.org/10.3201/eid2104.141469
DOI: 10.3201/eid2104.141469
1These authors contributed equally to this article.

No hay comentarios:

Publicar un comentario