jueves, 21 de mayo de 2020

Identifying and Interrupting Superspreading Events—Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2 - Volume 26, Number 6—June 2020 - Emerging Infectious Diseases journal - CDC

Identifying and Interrupting Superspreading Events—Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2 - Volume 26, Number 6—June 2020 - Emerging Infectious Diseases journal - CDC

Link to Current Issue



Volume 26, Number 6—June 2020
Perspective

Identifying and Interrupting Superspreading Events—Implications for Control of Severe Acute Respiratory Syndrome Coronavirus 2

Thomas R. Frieden1Comments to Author  and Christopher T. Lee1
Author affiliations: Resolve to Save Lives, New York, New York, USA

Abstract

It appears inevitable that severe acute respiratory syndrome coronavirus 2 will continue to spread. Although we still have limited information on the epidemiology of this virus, there have been multiple reports of superspreading events (SSEs), which are associated with both explosive growth early in an outbreak and sustained transmission in later stages. Although SSEs appear to be difficult to predict and therefore difficult to prevent, core public health actions can prevent and reduce the number and impact of SSEs. To prevent and control of SSEs, speed is essential. Prevention and mitigation of SSEs depends, first and foremost, on quickly recognizing and understanding these events, particularly within healthcare settings. Better understanding transmission dynamics associated with SSEs, identifying and mitigating high-risk settings, strict adherence to healthcare infection prevention and control measures, and timely implementation of nonpharmaceutical interventions can help prevent and control severe acute respiratory syndrome coronavirus 2, as well as future infectious disease outbreaks.
Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) continues to spread (1). Although we still have limited information on the epidemiology of coronavirus disease (COVID-19), there have been multiple reports of superspreading events (SSEs) (24). During recent severe outbreaks of SARS, Middle East respiratory syndrome (MERS), and Ebola virus disease, SSEs were associated with explosive growth early in an outbreak and sustained transmission in later stages (57). Here, we review the factors that contribute to SSEs and implications for control of SARS-CoV-2.
SSEs are not limited to emerging infectious diseases. In the early 20th century, Mary Mallon (Typhoid Mary), an asymptomatic typhoid carrier who worked as a cook, infected >50 persons (810). An ingenious and elegant but little-known study of tuberculosis demonstrated that many patients, even those with smear-positive, cavitary tuberculosis, were not highly infectious but that 3 of 77 patients accounted for 73% of the infectious burden (11). In 1997, Woolhouse et al. observed that 20% of the population contributed to >80% of transmission and suggested targeting interventions to the core 20% (12). SSEs have also caused explosive outbreaks of measles, including among vaccinated persons (13).
During the 2003 SARS epidemic in Beijing, China, 1 hospitalized index patient was the source of 4 generations of transmission to 76 patients, visitors, and healthcare workers (14). During the MERS outbreak in South Korea, 166 (89%) of 186 confirmed primary cases did not further transmit the disease, but 5 patients led to 154 secondary cases (15). The index patient transmitted MERS to 28 other persons, and 3 of these secondary cases infected 84, 23, and 7 persons. During Ebola, SSEs played a key role sustaining the epidemic: 3% of cases were estimated to be responsible for 61% of infections (6).
SSEs highlight a major limitation of the concept of R0. The basic reproductive number R0, when presented as a mean or median value, does not capture the heterogeneity of transmission among infected persons (16); 2 pathogens with identical R0 estimates may have markedly different patterns of transmission. Furthermore, the goal of a public health response is to drive the reproductive number to a value <1, something that might not be possible in some situations without better prevention, recognition, and response to SSEs. A meta-analysis estimated that the initial median R0 for COVID-19 is 2.79 (meaning that 1 infected person will on average infect 2.79 others), although current estimates might be biased because of insufficient data (17).
Countermeasures can substantially reduce the reproductive number; on the Diamond Princess cruise ship, an initial estimated R0 of 14.8 (≈4 times higher than the R0 in the epicenter of the outbreak in Wuhan, China) was reduced to an estimated effective reproductive number of 1.78 after on-board isolation and quarantine measures were implemented (18). In Wuhan, aggressive implementation of nonpharmaceutical interventions (NPIs) in the community, including a cordon sanitaire of the city; suspension of public transport, school, and most work; and cancellation of all public events reduced the reproductive number from 3.86 to 0.32 over a 5-week period (C. Wang et al., unpub. data, https://doi.org/10.1101/2020.03.03.20030593External Link). However, these interventions might not be sustainable.

Drivers of SSEs

Although SSEs appear to be difficult to predict and therefore difficult to prevent, understanding the pathogen, host, environmental, and behavioral drivers of SSEs can inform strategies for SSE prevention and control (19,20) (Table). The potential impact of these factors has been analyzed (5). We summarize the evidence for multiple pathogens to facilitate a more generalized approach that can be applied to the current COVID-19 pandemic.
Pathogen-specific factors include binding sites (29), environmental persistence, virulence, and infectious dose. Strains of some organisms might be more readily transmissible than other strains of the same species (21,22). Mutation can potentially lead to increased infectivity (6); one preliminary report suggested that SARS-CoV-2 might have 2 distinct genetic subtypes, with the less lethal form becoming more dominant as a result of treating and isolating infected persons (30). Monitoring for genetic adaptation, both by whole-genome sequencing and epidemiologic investigation, will determine whether transmissibility of SARS-CoV-2 is evolving and whether variants of the virus are more readily transmitted.
Host factors include duration of infection (prolonged carriage), location and burden of infection (e.g., laryngeal or cavitary tuberculosis), and symptomatology (e.g., transmission of influenza during the prodromal phase) (23). All SARS superspreaders were symptomatic. The potential for and extent of transmission of COVID-19 from asymptomatic infected persons has not yet been fully characterized, although probable asymptomatic transmission has been documented in at least 1 family cluster (31). Epidemiologic analysis is required to understand the proportion of COVID-19 transmission which occurs before symptom onset, whether children are effective transmitters, and to identify host factors that might be associated with increased infectivity (32).
Environmental factors include population density and the availability and use of infection prevention and control measures in healthcare facilities. SARS and MERS had relatively low rates of person-to-person transmission but caused explosive outbreaks in healthcare settings (28). Rapid person-to-person transmission of COVID-19 appears likely to have occurred in healthcare settings, on a cruise ship, and in a church (3). In a study of 110 case-patients from 11 clusters in Japan, all clusters were associated with closed environments, including fitness centers, shared eating environments, and hospitals; the odds for transmission from a primary case-patient were 18.7 times higher than in open-air environments (H. Nishiura et al., unpub. data, https://doi.org/10.1101/2020.02.28.20029272External Link). SARS-CoV-2 is present in stool (33); ensuring cleanliness of toilets and other potentially contaminated surfaces is needed, and measures to prevent aerosolization from plumbing, as might have occurred in the Amoy Garden outbreak of SARS (24), might need to be implemented. Evidence of environmental contamination by SARS-CoV-2 through respiratory droplets and fecal shedding highlights the need for effective decontamination efforts and strict adherence to environmental hygiene, which are pertinent to prevention and control of transmission, including SSEs (34).
Behavioral factors include cough hygiene, social customs, health-seeking behavior, and adherence to public health guidance. The risk for SSEs varies widely on the basis of cultural and socioeconomic context. In Sierra Leone, 1 traditional funeral was associated with 28 laboratory-confirmed cases of Ebola (26,35). Perceptions of risk can influence behavior and the likelihood of SSEs. Underestimation of risk in healthcare facilities resulted in transmission that prolonged the Ebola outbreak in Guinea (27). During the MERS outbreak in South Korea, doctor shopping (visiting multiple healthcare facilities after symptoms developed) was associated with SSEs (36). For control of COVID-19, behavioral recommendations for the general population to wash hands, cover coughs, and minimize exposing others, as well as rigorous infection control for healthcare workers, are needed.
Response factors include the timely and effective implementation of prevention and control measures within the community and in healthcare settings. These factors can reduce outbreak duration and decrease the reproductive number, thereby reducing the number of persons infected. Because delay of diagnosis is the most common cause of SSEs (16), timeliness is critical to prevent or limit their extent (20). Rapid identification and isolation of cases will reduce transmission; where necessary, large-scale NPIs should also be implemented in affected areas within 1 week (37). Effective case isolation and contact tracing might be sufficient to control a cluster of COVID-19, but the probability of control will decrease with delays in patient isolation from symptom onset (38).

Prevention and Mitigation of SSEs

SSE prevention and mitigation depends, first and foremost, on quickly recognizing and understanding these events. This recognition and understanding enables implementation of control measures specific to the incident and identification of measures, which can reduce the risk for future SSEs. During the SARS epidemic, rapid quarantine and isolation reduced outbreak extent and speed (19), and the lack of early detection was the primary cause of a hospital MERS outbreak in South Korea (39). An analysis of available data from Hong Kong, Vietnam, Singapore, and Canada found that delaying SARS control measures by just a week could have tripled the size of the epidemic (7). A modeling study of control interventions and SSEs in South Korea found that timely interventions (within 1 week), including a government announcement of affected hospitals, reduced the size and duration of MERS transmission (28).
Healthcare facilities are critical for prevention and control of SSEs. Targeted control measures include rapid identification and isolation of all potentially infectious patients, including a high index of suspicion for transmissible diseases, and implementation of universal infection control procedures in all areas of all facilities (20,40). Because individual superspreaders can only be identified retrospectively, universal implementation of triage procedures, rapid diagnosis and isolation, administrative controls (e.g., flow patterns and procedures for patients, visitors, and staff), and engineering controls (e.g., isolation rooms, partitions to protect against respiratory droplets, ventilation systems) are all necessary (28). Meticulous infection control is especially needed when performing procedures such as bronchoscopy, intubation, suctioning, sputum induction, and nebulizer therapies, which can enable what would normally be a droplet-transmitted infection to become aerosolized and therefore able to be more widely disseminated. If these types of procedures are needed, they should be performed by using strict infection control procedures and, when possible, in airborne infection isolation units.
SSEs in healthcare settings can be associated with increased illness and death because many infections occur among patients with underlying conditions, which can delay diagnosis and exacerbate pathologic changes (41,42). Most tuberculosis is spread by patients who have not yet been given a diagnosis, rather than by failure to effectively isolate these patients (43). Risk factors for SSEs of SARS among 86 wards in Guangzhou, China, and 38 wards in Hong Kong were related to inadequate infection prevention and control, including insufficient availability of washing and changing facilities for staff, performing resuscitation on the ward, staff working while experiencing symptoms, and use of oxygen therapy or positive pressure ventilation (25). One patient in China who had only abdominal symptoms was not initially suspected of having COVID-19 and was admitted to a surgical ward; >10 healthcare workers and >4 patients were presumed to have been infected by this patient (3). It is essential that healthcare facilities implement infection control guidelines for COVID-19 rigorously. It is also essential that any nosocomial transmission is analyzed to identify the modes of spread, which will inform best strategies for prevention.
SSEs also occur in settings other than healthcare settings (44). The SARS outbreak in Hong Kong was characterized by 2 SSEs responsible for >400 infections (45); 1 guest at the Metropole Hotel was the index case for 4 national and international clusters (46). Community-wide NPIs, including risk communication to the public on social distancing, hand and respiratory hygiene, and criteria for either self-isolation or safer presentation to the hospital, can limit community transmission. During the SARS outbreak, effective communication appears to have reduced time from symptom onset to hospital admission and decreased the number of persons with whom patients had contact before isolation (25). The combination of facility-based and population-based interventions ended SARS transmission (19,47).
A study modeling the impact of interventions in Wuhan found that, although early identification and isolation reduced the number of infections somewhat, integrated implementation of NPIs decreased the number of cases rapidly and substantially and drove the reproductive number to <1 (C. Wang et al., unpub. data, https://doi.org/10.1101/2020.03.03.20030593External Link). If NPIs had been implemented 2 weeks earlier, an estimated 86% of cases might have been prevented (48). For COVID-19, broad infection prevention and control measures include cough and hand hygiene, self-isolation by staying home if sick, and avoiding infection during care-seeking and caregiving.

Conclusions

COVID-19 has already killed more persons than SARS and MERS combined. Both of these coronavirus infections were fueled by SSEs. Understanding transmission dynamics associated with SSEs and their control during other coronavirus outbreaks can help inform current public health approaches to SARS-CoV-2. Anticipated heterogeneity in transmission should be used to plan disease control programs and risk-stratify populations for public health interventions. Countries should develop and implement protocols for implementation of rapid identification, diagnosis, and isolation of patients; effective infection prevention and control practices in healthcare facilities; and timely and relevant risk communication. Such measures can mitigate the impact of SSEs, which have been major drivers of recent epidemics.
Because delay in diagnosis and failure to rapidly implement isolation and response measures have fueled previous SSEs, countries should have plans and operational capacities in place during the containment phase of the response for immediate investigation and implementation of control measures. During the later mitigation phase, when surveillance and laboratory resources are limited, surveillance and focused response efforts should prioritize environments and settings at high risk for SSEs, including closed environments such as healthcare facilities, nursing homes, prisons, homeless shelters, schools, and sites of mass gatherings while community-wide NPIs are implemented more broadly.
Targeted and rapidly implemented public health interventions to prevent and mitigate SSEs are critical for early interruption of transmission during the containment phase and to reduce the effect on the disruption of healthcare services and society during the mitigation phase. Because of the societal and cultural underpinnings of behavioral and environmental factors including the local acceptability of adoption of NPIs, early engagement of communities, including an in-depth understanding of knowledge, attitudes, and practices relevant to the pandemic will be critical to response efforts during all phases.
Dr. Frieden is a physician, president, and chief executive officer at Resolve to Save Lives, New York, NY, a global initiative and part of the global nonprofit Vital Strategies that works with countries to prevent 100 million deaths from cardiovascular disease and make the world safer from epidemics. He is former director of the US Centers for Disease Control and Prevention and former commissioner of the New York City Health Department. His research interests include epidemiology of infectious diseases and public health.
Dr. Lee is a medical epidemiologist and senior technical advisor at Resolve to Save Lives. He previously served as medical officer with the Measles Elimination Team, Global Immunization Division, Centers for Disease Control and Prevention and as an Epidemic Intelligence Service Officer assigned to the New York City Health Department. He previously worked on migration health and disaster response. His research interests include causes and consequences of forced migration, homelessness, and infectious disease epidemiology.

Acknowledgment

We thank Cyrus Shahpar and Amanda McClelland for providing contributions to the manuscript and Drew Blakeman for providing assistance with manuscript preparation.

References

  1. World Health Organization. Coronavirus disease 2019 (COVID-19) situation reports, 2020 [cited 2020 Mar 8]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reportsExternal Link
  2. Why 14 doctors in Wuhan were infected: no eyepieces and masks were worn during surgery Shanghai: Shanghai First Finance Media Limited, January 22, 2020 [cited 2020 Mar 8]. https://www.yicai.com/news/100477916.htmlExternal Link
  3. Wang  DHu  BHu  CZhu  FLiu  XZhang  Jet al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020 [Epub ahead of print].
  4. South Korean city on high alert as coronavirus cases soar at ‘cult’ church. New York: The Guardian, February 20, 2020 [cited 2020 Mar 8]. https://www.theguardian.com/world/2020/feb/20/south-korean-city-daegu-lockdown-coronavirus-outbreak-cases-soar-at-church-cult-clusterExternal Link
  5. Wong  GLiu  WLiu  YZhou  BBi  YGao  GFMERS, SARS, and Ebola: the role of super-spreaders in infectious disease. Cell Host Microbe2015;18:398401DOIExternal LinkPubMedExternal Link
  6. Lau  MSDalziel  BDFunk  SMcClelland  ATiffany  ARiley  Set al. Spatial and temporal dynamics of superspreading events in the 2014-2015 West Africa Ebola epidemic. Proc Natl Acad Sci U S A2017;114:233742DOIExternal LinkPubMedExternal Link
  7. Wallinga  JTeunis  PDifferent epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol2004;160:50916DOIExternal LinkPubMedExternal Link
  8. Leavitt  J. Typhoid Mary: captive to the public’s health. Boston: Beacon Press; 1996.
  9. Marineli  FTsoucalas  GKaramanou  MAndroutsos  GMary Mallon (1869-1938) and the history of typhoid fever. Ann Gastroenterol2013;26:1324.PubMedExternal Link
  10. Prouty  AMSchwesinger  WHGunn  JSBiofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun2002;70:26409DOIExternal LinkPubMedExternal Link
  11. Riley  RLMills  CCO’Grady  FSultan  LUWittstadt  FShivpuri  DNInfectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected air: comparative infectiousness of different patients. Am Rev Respir Dis1962;85:51125.PubMedExternal Link
  12. Woolhouse  MEDye  CEtard  JFSmith  TCharlwood  JDGarnett  GPet al. Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A1997;94:33842DOIExternal LinkPubMedExternal Link
  13. Shimizu  KKinoshita  RYoshii  KAkhmetzhanov  ARJung  SLee  Het al. An investigation of a measles outbreak in Japan and China, Taiwan, China, March-May 2018. Western Pac Surveill Response J2018;9:2531DOIExternal LinkPubMedExternal Link
  14. Shen  ZNing  FZhou  WHe  XLin  CChin  DPet al. Superspreading SARS events, Beijing, 2003. Emerg Infect Dis2004;10:25660DOIExternal LinkPubMedExternal Link
  15. Chun  BCUnderstanding and modeling the super-spreading events of the Middle East respiratory syndrome outbreak in Korea. Infect Chemother2016;48:1479DOIExternal LinkPubMedExternal Link
  16. Lloyd-Smith  JOSchreiber  SJKopp  PEGetz  WMSuperspreading and the effect of individual variation on disease emergence. Nature2005;438:3559DOIExternal LinkPubMedExternal Link
  17. Liu  YGayle  AAWilder-Smith  ARocklöv  JThe reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med2020;27:taaa021Epub ahead of printDOIExternal LinkPubMedExternal Link
  18. Rocklöv  JSjödin  HWilder-Smith  ACOVID-19 outbreak on the Diamond Princess cruise ship: estimating the epidemic potential and effectiveness of public health countermeasures. J Travel Med2020;taaa030Epub ahead of printDOIExternal LinkPubMedExternal Link
  19. Bauch  CTLloyd-Smith  JOCoffee  MPGalvani  APDynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology2005;16:791801DOIExternal LinkPubMedExternal Link
  20. Lloyd-Smith  JOGalvani  APGetz  WMCurtailing transmission of severe acute respiratory syndrome within a community and its hospital. Proc Biol Sci2003;270:197989DOIExternal LinkPubMedExternal Link
  21. Luo  TComas  ILuo  DLu  BWu  JWei  Let al. Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proc Natl Acad Sci U S A2015;112:813641DOIExternal LinkPubMedExternal Link
  22. Holt  KEMcAdam  PThai  PVKThuong  NTTHa  DTMLan  NNet al. Frequent transmission of the Mycobacterium tuberculosis Beijing lineage and positive selection for the EsxW Beijing variant in Vietnam. Nat Genet2018;50:84956DOIExternal LinkPubMedExternal Link
  23. Ip  DKLau  LLLeung  NHFang  VJChan  KHChu  DKet al. Viral shedding and transmission potential of asymptomatic and paucisymptomatic influenza virus infections in the community. Clin Infect Dis2017;64:73642.PubMedExternal Link
  24. Yu  ITLi  YWong  TWTam  WChan  ATLee  JHet al. Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med2004;350:17319DOIExternal LinkPubMedExternal Link
  25. Yu  ITXie  ZHTsoi  KKChiu  YLLok  SWTang  XPet al. Why did outbreaks of severe acute respiratory syndrome occur in some hospital wards but not in others? Clin Infect Dis2007;44:101725DOIExternal LinkPubMedExternal Link
  26. Nielsen  CFKidd  SSillah  ARDavis  EMermin  JKilmarx  PHCenters for Disease Control and PreventionImproving burial practices and cemetery management during an Ebola virus disease epidemic - Sierra Leone, 2014. MMWR Morb Mortal Wkly Rep2015;64:207.PubMedExternal Link
  27. Faye  OBoëlle  PYHeleze  EFaye  OLoucoubar  CMagassouba  Net al. Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. Lancet Infect Dis2015;15:3206DOIExternal LinkPubMedExternal Link
  28. Lee  JChowell  GJung  EA dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: A retrospective analysis on control interventions and superspreading events. J Theor Biol2016;408:11826DOIExternal LinkPubMedExternal Link
  29. Richard  MFouchier  RAInfluenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiol Rev2016;40:6885DOIExternal LinkPubMedExternal Link
  30. Tang  XWu  CLi  XSong  YYao  XWu  Xet al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev2020;nwaa036; [Epub ahead of print]. DOIExternal Link
  31. Yu  PZhu  JZhang  ZHan  YHuang  LA familial cluster of infection associated with the 2019 novel coronavirus indicating potential person-to-person transmission during the incubation period. J Infect Dis2020;jiaa077Epub ahead of printDOIExternal LinkPubMedExternal Link
  32. Kupperscmidt  K. Study claiming new coronavirus can be transmitted by people without symptoms was flawed. Washington: American Association for the Advancement of Science, February 3, 2020 [cited 2020 Mar 8]. https://www.sciencemag.org/news/2020/02/paper-non-symptomatic-patient-transmitting-coronavirus-wrongExternal Link
  33. Gu  JHan  BWang  J. COVID-19: Gastrointestinal manifestations and potential fecal-oral transmission. Gastroenterology. 2020;Mar 3:pii: S0016-5085(20)30281-X. Epub ahead of print].
  34. Ong  SWXTan  YKChia  PYLee  THNg  OTWong  MSYet al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA2020Epub ahead of printDOIExternal LinkPubMedExternal Link
  35. Curran  KGGibson  JJMarke  DCaulker  VBomeh  JRedd  JTet al. Cluster of Ebola virus disease linked to a single funeral—Moyamba District, Sierra Leone, 2014. MMWR Morb Mortal Wkly Rep2016;65:2025DOIExternal LinkPubMedExternal Link
  36. Kim  SWPark  JWJung  HDYang  JSPark  YSLee  Cet al. Risk factors for transmission of Middle East respiratory syndrome coronavirus infection during the 2015 outbreak in South Korea. Clin Infect Dis2017;64:5517.PubMedExternal Link
  37. Zhao  SLin  QRan  JMusa  SSYang  GWang  Wet al. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis2020;92:2147DOIExternal LinkPubMedExternal Link
  38. Hellewell  JAbbott  SGimma  ABosse  NIJarvis  CIRussell  TWet al.Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working GroupFeasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health2020;8:e48896Epub ahead of printDOIExternal LinkPubMedExternal Link
  39. Park  GEKo  JHPeck  KRLee  JYLee  JYCho  SYet al. Control of an outbreak of Middle East respiratory syndrome in a tertiary hospital in Korea. Ann Intern Med2016;165:8793DOIExternal LinkPubMedExternal Link
  40. World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (2019-nCoV) infection is suspected: interim guidance, January 28, 2020 [cited 2020 Mar 8]. https://www.who.int/publications-detail/clinical-management-of-severe-acute-respiratory-infection-when-novel-coronavirus-(ncov)-infection-is-suspectedExternal Link
  41. Amer  HAlqahtani  ASAlzoman  HAljerian  NMemish  ZAUnusual presentation of Middle East respiratory syndrome coronavirus leading to a large outbreak in Riyadh during 2017. Am J Infect Control2018;46:10225DOIExternal LinkPubMedExternal Link
  42. Lee  CTHagan  JEJantsansengee  BTumurbaatar  OEAltanchimeg  SYadamsuren  Bet al. Increase in infant measles deaths during a nationwide measles outbreak, Mongolia, 2015–2016. J Infect Dis2019;220:17719DOIExternal LinkPubMedExternal Link
  43. Frieden  TRSherman  LFMaw  KLFujiwara  PICrawford  JTNivin  Bet al. A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA1996;276:122935DOIExternal LinkPubMedExternal Link
  44. Liang  WZhu  ZGuo  JLiu  ZZhou  WChin  DPet al.Beijing Joint SARS Expert GroupSevere acute respiratory syndrome, Beijing, 2003. Emerg Infect Dis2004;10:2531DOIExternal LinkPubMedExternal Link
  45. Riley  SFraser  CDonnelly  CAGhani  ACAbu-Raddad  LJHedley  AJet al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science2003;300:19616DOIExternal LinkPubMedExternal Link
  46. Centers for Disease Control and Prevention (CDC)Update: Outbreak of severe acute respiratory syndrome—worldwide, 2003. MMWR Morb Mortal Wkly Rep2003;52:2416, 248.PubMedExternal Link
  47. Anderson  RMFraser  CGhani  ACDonnelly  CARiley  SFerguson  NMet al. Epidemiology, transmission dynamics and control of SARS: the 2002-2003 epidemic. Philos Trans R Soc Lond B Biol Sci2004;359:1091105DOIExternal LinkPubMedExternal Link
  48. Lai  SRuktanonchai  NWZhou  LProsper  OLuo  WWesolowski  Aet al. Effect of nonpharmaceutical interventions for containing the COVID-19 outbreak: an observational and modelling study. World Population. 2020 Mar 4 [cited 2020 Mar 8]. https://www.worldpop.org/events/COVID_NPIExternal Link
Table
Cite This Article

DOI: 10.3201/eid2606.200495
Original Publication Date: March 18, 2020
1These authors contributed equally to this article.

No hay comentarios:

Publicar un comentario