Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments - Volume 21, Number 7—July 2015 - Emerging Infectious Disease journal - CDC
Volume 21, Number 7—July 2015
Dispatch
Ebola Virus Stability on Surfaces and in Fluids in Simulated Outbreak Environments
On This Page
Robert Fischer1, Seth Judson1, Kerri Miazgowicz, Trenton Bushmaker, Joseph Prescott, and Vincent J. Munster
Abstract
We evaluated the stability of Ebola virus on surfaces and in fluids under simulated environmental conditions for the climate of West Africa and for climate-controlled hospitals. This virus remains viable for a longer duration on surfaces in hospital conditions than in African conditions and in liquid than in dried blood.
Since March 2014, >22,000 cases of Ebola virus disease (EVD) and ≈ 9,000 deaths have been reported in West Africa (1). Thousands of health care professionals have been mobilized to West Africa to assist with the ongoing outbreak of EVD (2). More than 800 Ebola virus (EBOV) infections have been reported in health care professionals (1).
Determining the persistence of EBOV on surfaces and under environmental conditions specific to outbreak settings and disease-endemic areas is critical to improving safety practices for these health care workers (3), as well as answering questions about EBOV transmission among the public (4). Researchers have experimentally assessed the stability of other EBOV strains on plastic, glass, and steel within dried media or guinea pig serum (5); in the dark on glass (6); and during exposure to UV light (7). However, the environmental conditions of these studies do not reflect the higher temperatures and relative humidities (RHs) in outbreak regions, or the current outbreak strain. No infectious EBOV could be found during environmental sampling in a ward with EVD patients; however, this result could be more indicative of cleaning measures than actual virus stability (8).
We report stability of EBOV with a current outbreak strain from Guinea (Makona-WPGC07) (9) on 3 clinically relevant surfaces: stainless steel, plastic, and Tyvek (Dupont, Wilmington, DE, USA). We also determined the stability of EBOV in water, spiked human blood, and blood from infected nonhuman primates (NHPs). These experiments were conducted in 2 environmental conditions, 21°C, 40% RH, and 27°C, 80% RH, to simulate a climate-controlled hospital and the environment in West Africa, respectively.
Dr. Fischer and Mr. Judson are researchers in the Virus Ecology Unit at Rocky Mountain Laboratories in Hamilton, Montana. Their research interests are the ecology and evolution of emerging infectious diseases and relationships between human and environmental health.
Acknowledgment
This study was supported by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health.
References
- Ebola situation report WHO—28 January 2015 [cited 2015 Feb 12]. http://apps.who.int/ebola/en/ebola-situation-report/situation-reports/ebola-situation-report-11-february-2015
- Medecins Sans Frontieres. Ebola crisis update— 3th January 2015 [cited 2015 Feb 12]. http://www.msf.org/article/ebola-crisis-update-13th-january-2015
- Institute of Medicine. Research priorities to inform public health and medical practice for Ebola virus disease: workshop in brief. 2014 [cited 2015 Feb 12]. http://iom.edu/Reports/2014/Research-Priorities-to-Inform-Public-Health-and-Medical-Practice-for-Ebola-Virus-Disease-WIB.aspx
- Judson S, Prescott J, Munster V. Understanding Ebola virus transmission. Viruses. 2015;7:511–21. DOIPubMed
- Piercy TJ, Smither SJ, Steward JA, Eastaugh L, Lever MS. The survival of filoviruses in liquids, on solid substrates and in a dynamic aerosol. J Appl Microbiol. 2010;109:1531–9 .PubMed
- Sagripanti JL, Rom AM, Holland LE. Persistence in darkness of virulent alphaviruses, Ebola virus, and Lassa virus deposited on solid surfaces. Arch Virol. 2010;155:2035–9. DOIPubMed
- Sagripanti JL, Lytle CD. Sensitivity to ultraviolet radiation of Lassa, vaccinia, and Ebola viruses dried on surfaces. Arch Virol. 2011;156:489–94.DOIPubMed
- Bausch DG, Towner JS, Dowell SF, Kaducu F, Lukwiya M, Sanchez A, Assessment of the risk of Ebola virus transmission from bodily fluids and fmites.J Infect Dis. 2007;196(Suppl 2):S142–7. DOIPubMed
- Hoenen T, Groseth A, Feldmann F, Marzi A, Ebihara H, Kobinger G, Complete genome sequences of three Ebola virus isolates from the 2014 outbreak in west Africa. Genome Announc. 2014;2:e01331-14.
- van Doremalen N, Bushmaker T, Munster VJ. Stability of Middle East respiratory syndrome coronavirus (MERS-CoV) under different environmental conditions. Euro Surveill. 2013;18:pii/20599.
- Hierholzer J, Killington R. Virus isolation and quantitation. In: Mahy B, Kangro H, editors. Virology methods manual. London: Academic Press; 1996. p. 25–46.
- Stallknecht DE, Shane S, Kearney M, Zwank P. Persistence of avian influenza viruses in water. Avian Dis. 1990;34:406–11. DOIPubMed
- Prescott J, Bushmaker T, Fischer R, Miazgowicz K, Judson S, Munster VJ. Postmortem stability of Ebola virus. Emerg Infect Dis. 2015;21:856–9.DOIPubMed
- Kreuels B, Wichmann D, Emmerich P, Schmidt-Chanasit J, de Heer G, Kluge S, A case of severe Ebola virus infection complicated by gram-negative septicemia. N Engl J Med. 2014;371:2394–401. DOIPubMed
Figures
Tables
Suggested citation for this article: Fischer R, Judson S, Miazgowicz K, Bushmaker T, Prescott J, Munster VJ. Ebola virus stability on surfaces and in fluids in simulated outbreak environments. Emerg Infect Dis. 2015 Jul [date cited]. http://dx.doi.org/10.3201/eid2107.150253
1These authors contributed equally to this article.
No hay comentarios:
Publicar un comentario