Outbreak of Severe Zoonotic Vaccinia Virus Infection, Southeastern Brazil - Volume 21, Number 4—April 2015 - Emerging Infectious Disease journal - CDC
Volume 21, Number 4—April 2015
Dispatch
Outbreak of Severe Zoonotic Vaccinia Virus Infection, Southeastern Brazil
On This Page
Jônatas Santos Abrahão, Rafael Kroon Campos, Giliane de Souza Trindade, Flávio Guimarães da Fonseca, Paulo César Peregrino Ferreira, and Erna Geessien Kroon
Abstract
In 2010, a vaccinia virus isolate caused an atypically severe outbreak that affected humans and cattle in Brazil. Of 26 rural workers affected, 12 were hospitalized. Our data raise questions about the risk factors related to the increasing number and severity of vaccinia virus infections.
After the World Health Organization declared in 1980 that smallpox had been eradicated, smallpox vaccination was suspended (1). This fact led to the emergence of a generation of humans that is susceptible to infection by zoonotic viruses of the genus Orthopoxvirus, which includes cowpox virus in Europe; monkeypox virus, which occurs naturally in Africa and of which 1 introduction was event reported in the United States; and vaccinia virus (VACV) in Asia and South America (2–5).
Especially during the past decade, orthopoxvirus (OPV) infections have increased worldwide, and the immunologic status of the population against OPV is a major risk factor for its reemergence (6). We describe an outbreak of atypically severe VACV infection in which 12 rural workers in Brazil, who were not vaccinated against smallpox, were hospitalized because of systemic clinical manifestations.
Dr. Abrahão is a biologist and professor of virology at the Laboratório de Vírus, Microbiology Department, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. His research interests focus on monitoring and preventing emerging infectious diseases.
Acknowledgments
We thank all of our colleagues from Laboratório de Vírus, Universidade Federal de Minas Gerais, for their technical support.
Financial support was provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Pro-Reitoria de Pesquisa da Universidade Federal de Minas Gerais (PRPq-UFMG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Ministério da Agricultura, Pecuária e Abastecimento (MAPA). E.G.K., P.P.F., C.A.B., G.S.T., and F.G.F. are CNPq researchers.
References
- Damon IK. Poxviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, et al., editors. Fields virology. Vol II. 5th ed. Philadelphia: Lippincott Williams and Wilkins; 2007. p. 2947–75.
- Reynolds MG, Carroll DS, Karem KL. Factors affecting the likelihood of monkeypox’s emergence and spread in the post-smallpox era. Curr Opin Virol. 2012;2:335–43. PubMed
- Ducournau C, Ferrier-Rembert A, Ferraris O, Joffre A, Favier AL, Flusin O, Concomitant human infections with 2 cowpox virus strains in related cases, France, 2011. Emerg Infect Dis. 2013;19:1996–9 . DOIPubMed
- Kroon EG. Mota BEF, Abrahão JS, Fonseca FG, Trindade GS. Zoonotic Brazilian vaccinia virus: from field to therapy. Antiviral Res. 2011;92:150–63 .DOIPubMed
- Singh RK, Hosamani M, Balamurugan V, Bhanuprakash V, Rasool TJ, Yadav MP. Buffalopox: an emerging and re-emerging zoonosis. Anim Health Res Rev. 2007;8:105–14 . DOIPubMed
- Shchelkunov SN. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013;9:e1003756. DOIPubMed
- Abrahão JS. Silva-Fernandes AT, Lima LS, Campos RK, Guedes MI, Cota MM, et al. Vaccinia virus infection in monkeys, Brazilian Amazon. Emerg Infect Dis. 2010;16:976–9. DOIPubMed
- Abrahão JS, Lima LS, Assis FL, Alves PA, Silva-Fernandes AT, Cota MM, Nested-multiplex PCR detection of orthopoxvirus and parapoxvirus directly from exanthematic clinical samples. Virol J. 2009;6:140. DOIPubMed
- Abrahão JS, Drumond BP, Trindade Gde S, da Silva-Fernandes AT, Ferreira JM, Alves PA, Rapid detection of orthopoxvirus by semi-nested PCR directly from clinical specimens: a useful alternative for routine laboratories. J Med Virol. 2010;82:692–9. DOIPubMed
- Ropp SL, Jin Q, Knight JC, Massung RF, Esposito JJ. PCR strategy for identification and differentiation of small pox and other orthopoxviruses. J Clin Microbiol. 1995;33:2069–76 .PubMed
- Leite JA, Drumond BP, Trindade GS, Bonjardim CA, Ferreira PC, Kroon EG. Brazilian vaccinia virus strains show genetic polymorphism at the ati gene. Virus Genes. 2007;35:531–9. DOIPubMed
- Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. DOIPubMed
- Damaso CR, Esposito JJ, Condit RC, Moussatché N. An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology. 2000;277:439–49. DOIPubMed
- Trindade GS, Emerson GL, Carroll DS, Kroon EG, Damon IK. Brazilian vaccinia viruses and their origins. Emerg Infect Dis. 2007;13:965–72.DOIPubMed
- Drumond BP, Leite JA, da Fonseca FG, Bonjardim CA, Ferreira PC, Kroon EG. Brazilian vaccinia virus strains are genetically divergent and differ from the Lister vaccine strain. Microbes Infect. 2008;10:185–97. DOIPubMed
Figure
Table
Suggested citation for this article: Abrahão JS, Campos RK, de Souza Trindade G, da Fonseca FG, Peregrino Fereira PC, Kroon EG. Outbreak of severe zoonotic vaccinia virus infection, southeastern Brazil. Emerg Infect Dis [Internet]. 2015 Apr [date cited]. http://dx.doi.org/10.3201/eid2104.140351
No hay comentarios:
Publicar un comentario