jueves, 19 de marzo de 2015

Norovirus Genotype Profiles Associated with Foodborne Transmission, 1999–2012 - Volume 21, Number 4—April 2015 - Emerging Infectious Disease journal - CDC

FULL-TEXT ►

Norovirus Genotype Profiles Associated with Foodborne Transmission, 1999–2012 - Volume 21, Number 4—April 2015 - Emerging Infectious Disease journal - CDC





Volume 21, Number 4—April 2015

Research

Norovirus Genotype Profiles Associated with Foodborne Transmission, 1999–2012

Linda Verhoef1Comments to Author , Joanne Hewitt1, Leslie Barclay1, Sharia Ahmed, Rob Lake, Aron J. Hall, Ben Lopman, Annelies Kroneman, Harry Vennema, Jan VinjA(c), and Marion P. Koopmans
Author affiliations: National Institute for Public Health and the Environment, Bilthoven, the Netherlands (L. Verhoef, A. Kroneman, H. Vennema, M. Koopmans)Institute of Environmental Science and Research, Porirua, New Zealand (J. Hewitt, R. Lake)Centers for Disease Control and Prevention, Atlanta, Georgia, USA (L. Barclay, S.M. Ahmed, A.J. Hall, B. Lopman, J. VinjA(c))Erasmus Medical Center, Rotterdam, the Netherlands (M. Koopmans)

Abstract

Worldwide, noroviruses are a leading cause of gastroenteritis. They can be transmitted from person to person directly or indirectly through contaminated food, water, or environments. To estimate the proportion of foodborne infections caused by noroviruses on a global scale, we used norovirus transmission and genotyping information from multiple international outbreak surveillance systems (Noronet, CaliciNet, EpiSurv) and from a systematic review of peer-reviewed literature. The proportion of outbreaks caused by food was determined by genotype and/or genogroup. Analysis resulted in the following final global profiles: foodborne transmission is attributed to 10% (range 9%%–11%) of all genotype GII.4 outbreaks, 27% (25%–30%) of outbreaks caused by all other single genotypes, and 37% (24%%–52%) of outbreaks caused by mixtures of GII.4 and other noroviruses. When these profiles are applied to global outbreak surveillance data, results indicate that ≈14% of all norovirus outbreaks are attributed to food.
Noroviruses are a leading cause of gastroenteritis worldwide. They belong to the family Caliciviridae and consist of an ≈7.5-kb genome in 3 open reading frames (ORFs). The first ORF (ORF1) encodes a polypeptide; ORF2 encodes the viral capsid protein (VP1); and ORF3 encodes a minor structural protein (VP2). Noroviruses are classified into at least 6 genogroups, GI–GVI (1). According to a recent unified proposal for nomenclature, genogroups are further subdivided into at least 38 genetic clusters (genotypes) (2). Noroviruses are environmentally stable (3) and can be transmitted by different routes (e.g., foodborne, personborne, waterborne, and environmental). Determining the transmission route during an outbreak investigation is complicated because transmission can occur by multiple routes in a single outbreak. After primary introduction of the virus through food, secondary person-to-person and environmental transmission can rapidly take over, making it hard to trace the disease back to contaminated food. Another complexity is that foodborne transmission can follow different routes as well; food can be contaminated during production (4) or during handling by an infected food handler (5).
Different exposure attribution methods (i.e., epidemiologic investigations, microbiological typing/subtyping, intervention studies, and expert elicitations) have been used to estimate the foodborne proportion of the overall disease incidence caused by a pathogen. Each approach has its advantages and disadvantages, and therefore the use of multiple methods has been recommended (6). Information about pathogen strain or subtypes may be of value for attribution but is dependent on substantial amounts of contextual data. For example, a method commonly used to attribute Salmonella spp. infections to a specific source uses strain collections representative of the pathogen in each of these sources (7).
For noroviruses, genogroup-specific differences have been reported with regard to environmental persistence (8), sensitivity to removal (9), and binding to receptors (10). These biological differences may underpin strain-specific epidemiologic patterns, suggesting a potentially useful approach for norovirus attribution. Such an approach was recently developed in a norovirus attribution study, which showed that the proportion of foodborne and person-to-person outbreaks differed between genotypes; the GI genotypes were more likely to be foodborne, and the II.4 genotype was more likely to be personborne (11). These findings indicate that genotype profiles may help distinguish which outbreaks are more likely to be foodborne than personborne. Also, a recent study on norovirus outbreaks in the United States showed that GI.3, GI.6, GI.7, GII.3, GII.6, and GII.12 were the norovirus genotypes most often associated with foodborne outbreaks and that, of the outbreaks with a known transmission route, 16% were foodborne (12). Norovirus infections, however, are a global problem, and efforts are under way to estimate the global social and economic costs of foodborne norovirus illness (13,14). To estimate the proportion of outbreaks attributed to foodborne transmission from a global perspective, we used aggregated norovirus outbreak data and genotyping information from different outbreak surveillance systems and from peer-reviewed literature.

Dr. Verhoef is an epidemiologist in the Center of Infectious Disease Control of the National Institute for Public Health and the Environment. Her work focuses on the epidemiology and surveillance of infectious diseases, particularly on the use of molecular typing information to facilitate source tracing activities.

Acknowledgments

We thank the World Health Organization's Foodborne Disease Burden Epidemiology Reference Group for financial support and critical review of this study, and we thank the FBVE and Noronet networks for collecting and sharing sequences.
The New Zealand Ministry of Health funded the work conducted by the ESR. This study was commissioned and paid for in part by the Foodborne Disease Burden Epidemiology Reference Group of the World Health Organization, the New Zealand Ministry of Health, and by the Government of the Netherlands on behalf of the Foodborne Disease Burden Epidemiology Reference Group.

References

  1. Fields BNKnipe DMHowley PM. Fields virology. 6th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2013.
  2. Kroneman AVega EVennema HVinje JWhite PAHansman GProposal for a unified norovirus nomenclature and genotyping. Arch Virol.2013;158:205968DOIPubMed
  3. Cannon JLPapafragkou EPark GWOsborne JJaykus LAVinje JSurrogates for the study of norovirus stability and inactivation in the environment: a comparison of murine norovirus and feline calicivirus. J Food Prot2006;69:27615 .PubMed
  4. Lees DViruses and bivalve shellfish. Int J Food Microbiol2000;59:81116DOIPubMed
  5. Thornley CNHewitt JPerumal LVan Gessel SMWong JDavid SAMultiple outbreaks of a novel norovirus GII.4 linked to an infected post-symptomatic food handler. Epidemiol Infect2013;141:158597DOIPubMed
  6. Pires SMAssessing the applicability of currently available methods for attributing foodborne disease to sources, including food and food commodities. Foodborne Pathog Dis2013;10:20613DOIPubMed
  7. Hald TVose DWegener HCKoupeev TA Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal2004;24:25569DOIPubMed
  8. Gentry JVinje JGuadagnoli DLipp EKNorovirus distribution within an estuarine environment. Appl Environ Microbiol2009;75:547480.DOIPubMed
  9. Tuladhar EHazeleger WCKoopmans MZwietering MHBeumer RRDuizer EResidual viral and bacterial contamination of surfaces after cleaning and disinfection. Appl Environ Microbiol2012;78:776975 . DOIPubMed
  10. Maalouf HZakhour MLe Pendu JLe Saux JCAtmar RLLe Guyader FSDistribution in tissue and seasonal variation of norovirus genogroup I and II ligands in oysters. Appl Environ Microbiol2010;76:562130 . DOIPubMed
  11. Verhoef LVennema Hvan Pelt WLees DBoshuizen HHenshilwood KUse of norovirus genotype profiles to differentiate origins of foodborne outbreaks. Emerg Infect Dis2010;16:61724DOIPubMed
  12. Vega EBarclay LGregoricus NShirley SHLee DVinje JGenotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013. J Clin Microbiol2014;52:14755DOIPubMed
  13. Siebenga JJVennema HZheng DPVinje JLee BEPang XLNorovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001–2007. J Infect Dis2009;200:80212DOIPubMed
  14. Stein CKuchenmuller THendrickx SPruss-Ustun AWolfson LEngels DThe Global Burden of Disease assessments–WHO is responsible? PLoS Negl Trop Dis2007;1:e161DOIPubMed
  15. Kroneman AHarris JVennema HDuizer Evan Duynhoven YGray JData quality of 5 years of central norovirus outbreak reporting in the European Network for food-borne viruses. J Public Health (Oxf)2008;30:8290DOIPubMed
  16. Vega EBarclay LGregoricus NWilliams KLee DVinje JNovel surveillance network for norovirus gastroenteritis outbreaks, United States. Emerg Infect Dis2011;17:138995 .PubMed
  17. Kageyama TKojima SShinohara MUchida KFukushi SHoshino FBBroadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol2003;41:154857DOIPubMed
  18. Greening GEHewitt JRivera-Aban MCroucher DMolecular epidemiology of norovirus gastroenteritis outbreaks in New Zealand from 2002–2009. J Med Virol2012;84:144958DOIPubMed
  19. Matthews JEDickey BWMiller RDFelzer JRDawson BPLee ASThe epidemiology of published norovirus outbreaks: a review of risk factors associated with attack rate and genogroup. Epidemiol Infect2012;140:116172DOIPubMed
  20. Brown LDCai TTDasGupta AInterval estimation for a binomial proportion. Stat Sci2001;16:10133DOI
  21. Lindesmith LCBeltramello MDonaldson EFCorti DSwanstrom JDebbink KImmunogenetic mechanisms driving norovirus GII.4 antigenic variation. PLoS Pathog2012;8:e1002705DOIPubMed
  22. Verhoef LDepoortere EBoxman IDuizer Evan Duynhoven YHarris JEmergence of new norovirus variants on spring cruise ships and prediction of winter epidemics. Emerg Infect Dis2008;14:23843DOIPubMed
  23. Bernard HHohne MNiendorf SAltmann DStark KEpidemiology of norovirus gastroenteritis in Germany 2001–2009: eight seasons of routine surveillance. Epidemiol Infect2014;142:6374.PubMed
  24. Lopman BAAdak GKReacher MHBrown DWTwo epidemiologic patterns of norovirus outbreaks: surveillance in England and Wales, 1992–2000.Emerg Infect Dis2003;9:717DOIPubMed
  25. Gallimore CIPipkin CShrimpton HGreen ADPickford YMcCartney CDetection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: an indication of the source of contamination. Epidemiol Infect2005;133:417 . DOIPubMed
  26. O'Brien SJGillespie IASivanesan MAElson RHughes CAdak GKPublication bias in foodborne outbreaks of infectious intestinal disease and its implications for evidence-based food policy. England and Wales 1992–2003. Epidemiol Infect2006;134:66774DOIPubMed
  27. Kroneman AVerhoef LHarris JVennema HDuizer Evan Duynhoven YAnalysis of integrated virological and epidemiological reports of norovirus outbreaks collected within the Foodborne Viruses in Europe network from 1 July 2001 to 30 June 2006. J Clin Microbiol2008;46:295965.DOIPubMed
  28. Verhoef LPKroneman AVan Duijnhoven YBoshuizen Hvan Pelt WKoopmans MSelection tool for foodborne norovirus outbreaks. Emerg Infect Dis2009;15:318DOIPubMed
  29. Rondy MKoopmans MRotsaert CVan Loon TBeljaars BVan Dijk GNorovirus disease associated with excess mortality and use of statins: a retrospective cohort study of an outbreak following a pilgrimage to Lourdes. Epidemiol Infect2011;139:45363DOIPubMed
  30. Sukhrie FHBeersma MFWong Avan der Veer BVennema HBogerman JUsing molecular epidemiology to trace transmission of nosocomial norovirus infection. J Clin Microbiol2011;49:6026DOIPubMed
  31. Symes SJGunesekere ICMarshall JAWright PJNorovirus mixed infection in an oyster-associated outbreak: an opportunity for recombination.Arch Virol2007;152:107586DOIPubMed
  32. van Beek JAmbert-Balay KBotteldoorn NEden JSFonager JHewitt JIndications for worldwide increased norovirus activity associated with emergence of a new variant of genotype II.4, late 2012. Euro Surveill2013;18:89 .PubMed
  33. Eden JSTanaka MMBoni MFRawlinson WDWhite PARecombination within the pandemic norovirus GII.4 lineage. J Virol2013;87:627082.DOIPubMed
  34. Fonager JBarzinci SFischer TKEmergence of a new recombinant Sydney 2012 norovirus variant in Denmark, 26 December 2012 to 22 March 2013. Euro Surveill2013;18:••• .PubMed
  35. Havelaar AHGalindo AVKurowicka DCooke RMAttribution of foodborne pathogens using structured expert elicitation. Foodborne Pathog Dis.2008;5:64959DOIPubMed
  36. Adak GKLong SMO'Brien SJTrends in indigenous foodborne disease and deaths, England and Wales: 1992 to 2000. Gut2002;51:83241.DOIPubMed
  37. Tam CCRodrigues LCViviani LDodds JPEvans MRHunter PRLongitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut2012;61:6977 . DOIPubMed
  38. Ahmed SMHall AJRobinson AEVerhoef LPremkumar PParashar UDGlobal prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis2014;14:72530DOIPubMed

Figures

Table

Technical Appendix

Suggested citation for this article: Verhoef L, Hewitt J, Barclay L, Ahmed S, Lake R, Hall AJ, et al. Norovirus genotype profiles associated with foodborne transmission, 1999–2012. Emerg Infect Dis. 2015 Apr [date cited]. http://dx.doi.org/10.3201/eid2104.141073
DOI: 10.3201/eid2104.141073
1These authors contributed equally to this article.

No hay comentarios:

Publicar un comentario