domingo, 23 de diciembre de 2018

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. - PubMed - NCBI

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. - PubMed - NCBI



 2018 Dec 5. pii: S0002-9297(18)30405-1. doi: 10.1016/j.ajhg.2018.11.002. [Epub ahead of print]

Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes.

Mavaddat N1Michailidou K2Dennis J3Lush M3Fachal L4Lee A3Tyrer JP4Chen TH5Wang Q3Bolla MK3Yang X3Adank MA6Ahearn T7Aittomäki K8Allen J3Andrulis IL9Anton-Culver H10Antonenkova NN11Arndt V12Aronson KJ13Auer PL14Auvinen P15Barrdahl M16Beane Freeman LE7Beckmann MW17Behrens S16Benitez J18Bermisheva M19Bernstein L20Blomqvist C21Bogdanova NV22Bojesen SE23Bonanni B24Børresen-Dale AL25Brauch H26Bremer M27Brenner H28Brentnall A29Brock IW30Brooks-Wilson A31Brucker SY32Brüning T33Burwinkel B34Campa D35Carter BD36Castelao JE37Chanock SJ7Chlebowski R38Christiansen H27Clarke CL39Collée JM40Cordina-Duverger E41Cornelissen S42Couch FJ43Cox A30Cross SS44Czene K45Daly MB46Devilee P47Dörk T48Dos-Santos-Silva I49Dumont M50Durcan L51Dwek M52Eccles DM53Ekici AB54Eliassen AH55Ellberg C56Engel C57Eriksson M45Evans DG58Fasching PA59Figueroa J60Fletcher O61Flyger H62Försti A63Fritschi L64Gabrielson M45Gago-Dominguez M65Gapstur SM36García-Sáenz JA66Gaudet MM36Georgoulias V67Giles GG68Gilyazova IR69Glendon G70Goldberg MS71Goldgar DE72González-Neira A73Grenaker Alnæs GI74Grip M75Gronwald J76Grundy A77Guénel P41Haeberle L17Hahnen E78Haiman CA79Håkansson N80Hamann U81Hankinson SE82Harkness EF83Hart SN84He W45Hein A17Heyworth J85Hillemanns P48Hollestelle A86Hooning MJ86Hoover RN7Hopper JL87Howell A88Huang G81Humphreys K45Hunter DJ89Jakimovska M90Jakubowska A91Janni W92John EM93Johnson N61Jones ME94Jukkola-Vuorinen A95Jung A16Kaaks R16Kaczmarek K76Kataja V96Keeman R42Kerin MJ97Khusnutdinova E69Kiiski JI98Knight JA99Ko YD100Kosma VM101Koutros S7Kristensen VN25Krüger U56Kühl T102Lambrechts D103Le Marchand L104Lee E79Lejbkowicz F105Lilyquist J84Lindblom A106Lindström S107Lissowska J108Lo WY109Loibl S110Long J111Lubiński J76Lux MP17MacInnis RJ112Maishman T51Makalic E87Maleva Kostovska I90Mannermaa A101Manoukian S113Margolin S114Martens JWM86Martinez ME115Mavroudis D67McLean C116Meindl A117Menon U118Middha P119Miller N97Moreno F66Mulligan AM120Mulot C121Muñoz-Garzon VM122Neuhausen SL20Nevanlinna H98Neven P123Newman WG58Nielsen SF124Nordestgaard BG23Norman A84Offit K125Olson JE84Olsson H56Orr N126Pankratz VS127Park-Simon TW48Perez JIA128Pérez-Barrios C129Peterlongo P130Peto J49Pinchev M105Plaseska-Karanfilska D90Polley EC84Prentice R131Presneau N52Prokofyeva D132Purrington K133Pylkäs K134Rack B92Radice P135Rau-Murthy R136Rennert G105Rennert HS105Rhenius V4Robson M136Romero A129Ruddy KJ137Ruebner M17Saloustros E138Sandler DP139Sawyer EJ140Schmidt DF141Schmutzler RK78Schneeweiss A142Schoemaker MJ94Schumacher F143Schürmann P48Schwentner L92Scott C84Scott RJ144Seynaeve C86Shah M4Sherman ME145Shrubsole MJ111Shu XO111Slager S84Smeets A123Sohn C142Soucy P50Southey MC146Spinelli JJ147Stegmaier C148Stone J149Swerdlow AJ150Tamimi RM151Tapper WJ152Taylor JA153Terry MB154Thöne K102Tollenaar RAEM155Tomlinson I156Truong T41Tzardi M157Ulmer HU158Untch M159Vachon CM84van Veen EM58Vijai J125Weinberg CR160Wendt C114Whittemore AS161Wildiers H123Willett W162Winqvist R134Wolk A163Yang XR7Yannoukakos D164Zhang Y12Zheng W111Ziogas A10ABCTB Investigators165kConFab/AOCS Investigators166NBCS Collaborators167Dunning AM4Thompson DJ3Chenevix-Trench G168Chang-Claude J169Schmidt MK170Hall P171Milne RL172Pharoah PDP173Antoniou AC3Chatterjee N174Kraft P175García-Closas M7Simard J50Easton DF173.

Abstract

Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.

KEYWORDS:

breast; cancer; epidemiology; genetic; polygenic; prediction; risk; score; screening; stratification

PMID:
 
30554720
 
DOI:
 
10.1016/j.ajhg.2018.11.002
Free full text

No hay comentarios:

Publicar un comentario