Lack of Transmission among Close Contacts of Patient with Case of Middle East Respiratory Syndrome Imported into the United States, 2014 - Volume 21, Number 7—July 2015 - Emerging Infectious Disease journal - CDC
Volume 21, Number 7—July 2015
Research
Lack of Transmission among Close Contacts of Patient with Case of Middle East Respiratory Syndrome Imported into the United States, 2014
On This Page
Lucy Breakwell1, Kimberly Pringle1, Nora Chea1, Donna Allen, Steve Allen, Shawn Richards, Pam Pantones, Michelle Sandoval, Lixia Liu, Michael Vernon, Craig Conover, Rashmi Chugh, Alfred DeMaria, Rachel Burns, Sandra Smole, Susan I. Gerber, Nicole J Cohen, David Kuhar, Lia M. Haynes, Eileen Schneider, Alan Kumar, Minal Kapoor, Marlene Madrigal, David L. Swerdlow, and Daniel R. Feikin
Abstract
In May 2014, a traveler from the Kingdom of Saudi Arabia was the first person identified with Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States. To evaluate transmission risk, we determined the type, duration, and frequency of patient contact among health care personnel (HCP), household, and community contacts by using standard questionnaires and, for HCP, global positioning system (GPS) tracer tag logs. Respiratory and serum samples from all contacts were tested for MERS-CoV. Of 61 identified contacts, 56 were interviewed. HCP exposures occurred most frequently in the emergency department (69%) and among nurses (47%); some HCP had contact with respiratory secretions. Household and community contacts had brief contact (e.g., hugging). All laboratory test results were negative for MERS-CoV. This contact investigation found no secondary cases, despite case-patient contact by 61 persons, and provides useful information about MERS-CoV transmission risk. Compared with GPS tracer tag recordings, self-reported contact may not be as accurate.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a lineage C betacoronavirus that was first reported in September 2012 in a patient from the Kingdom of Saudi Arabia (1). By September 8, 2014, a total of 837 laboratory-confirmed cases and 292 associated deaths had been reported by the World Health Organization. All reported case-patients have resided in or had recent travel to the Arabian Peninsula and neighboring countries (2).
Clusters of MERS-CoV infection have occurred within extended families, households, and healthcare settings (3–6). Contact investigations around imported cases in the United Kingdom, France, and Tunisia identified cases among household and healthcare contacts, suggesting person-to-person transmission (7–9). However, these investigations found limited onward transmission: a maximum of 3 second-generation cases were found among investigations with total contacts ranging from 7–163 persons (7–9). Other contact investigations of imported cases outside of the Middle East have found no secondary transmission (10–13).
On April 29, 2014, the Indiana State Department of Health (ISDH) informed the Centers for Disease Control and Prevention (CDC) of a patient under investigation for MERS-CoV infection. A clinical specimen from the patient was confirmed positive by CDC on May 2, 2014 (5); this infection was identified as the first imported MERS case in the United States. The case-patient, a physician and resident of Saudi Arabia, traveled by airplane to Chicago, Illinois, USA, via London, United Kingdom, then by bus to Indiana, USA. He stayed with his family in Indiana for 4 days, during which time he twice met with a business associate in Illinois before seeking medical care at an Indiana hospital; multiple healthcare personnel (HCP) at the hospital were exposed to the patient (14). Given the uncertainty around how MERS-CoV is transmitted, we conducted a comprehensive contact investigation of this case to characterize exposures in household, community, and hospital settings and to quantify the risk of transmission. We also compared contact reported by HCP during standardized interviews with those in global positioning system (GPS) tracer tag recordings.
Dr. Breakwell is an Epidemic Intelligence Service (EIS) Officer with the Meningitis and Vaccine Preventable Diseases Branch at CDC whose primary research interests focus on pertussis vaccine effectiveness and meningococcal disease outbreaks. Dr. Pringle is an EIS Officer with the Viral Gastroenteritis Branch at CDC whose primary research interests are vaccine efficacy and impact of the rotavirus vaccine internationally and surveillance of norovirus domestically. Dr. Chea is an EIS Officer of Prevention and Response Branch of the Division of Healthcare Quality Promotion, CDC, whose primary research interests include health care–associated infections and infection prevention and control.
Acknowledgment
We thank Community Hospital Munster, Indiana; Indiana State Department of Health; Illinois Department of Public Health; Massachusetts Department of Public Health; Cook County Department of Public Health, Illinois; and Dupage County Health Department, Illinois, for their participation in this investigation. We also acknowledge the work of Hayat Caidi, Congrong Miao, Jennifer Harcourt, Azaibi Tamin, Seyhan Boyoglu-Barnum, and Suvang Trivedi on serologic testing.
References
- Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.N Engl J Med. 2012;367:1814–20. DOIPubMed
- Bialek SR, Allen D, Alvarado-Ramy F, Arthur R, Balajee A, Bell D, First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities—May 2014. MMWR Morb Mortal Wkly Rep. 2014;63:431–6 .PubMed
- Omrani AS, Matin MA, Haddad Q, Al-Nakhli D, Memish ZA, Albarrak AM. A family cluster of Middle East respiratory syndrome coronavirus infections related to a likely unrecognized asymptomatic or mild case. Int J Infect Dis. 2013;17:e668–72. DOIPubMed
- Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. Family cluster of Middle East respiratory syndrome coronavirus infections. N Engl J Med. 2013;368:2487–94. DOIPubMed
- Al-Abdallat MM, Payne DC, Alqasrawi S, Rha B, Tohme RA, Abedi GR, Hospital-associated outbreak of Middle East respiratory syndrome coronavirus: a serologic, epidemiologic, and clinical description. Clin Infect Dis. 2014;59:1225–33. DOIPubMed
- Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med. 2013;369:407–16. DOIPubMed
- Health Protection Agency UK Novel Coronavirus Investigation team. Evidence of person-to-person transmission within a family cluster of novel coronavirus infections, United Kingdom, February 2013. Euro Surveill. 2013;18:20427 .PubMed
- Gulland A. Two cases of novel coronavirus are confirmed in France. BMJ. 2013;346:f3114 . DOIPubMed
- Abroug F, Slim A, Ouanes-Besbes L, Kacem MH, Dachraoui F, Ouanes I, Family cluster of Middle East respiratory syndrome coronavirus infections, Tunisia, 2013. Emerg Infect Dis. 2014;20:1527–30. DOIPubMed
- Pebody RG, Chand MA, Thomas HL, Green HK, Boddington NL, Carvalho C, The United Kingdom public health response to an imported laboratory confirmed case of a novel coronavirus in September 2012. Euro Surveill. 2012;17:20292 .PubMed
- Buchholz U, Muller MA, Nitsche A, Sanewski A, Wevering N, Bauer-Balci T, Contact investigation of a case of human novel coronavirus infection treated in a German hospital, October–November 2012. Euro Surveill. 2013;18:20406 .PubMed
- Reuss A, Litterst A, Drosten C, Seilmaier M, Bohmer M, Graf P, Contact investigation for imported case of Middle East respiratory syndrome, Germany. Emerg Infect Dis. 2014;20:620–5. DOIPubMed
- Premila Devi J, Noraini W, Norhayati R, Chee Kheong C, Badrul A, Zainah S, Laboratory-confirmed case of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in Malaysia: preparedness and response, April 2014. Euro Surveill. 2014;19:20797 .PubMed
- Kapoor M, Pringle K, Kumar A, Dearth S, Liu L, Lovchik J, Clinical and laboratory findings of the first imported case of Middle East respiratory syndrome coronavirus (MERS-CoV) into the United States. Clin Infect Dis. 2014;59:1511–8. DOIPubMed
- Lu X, Whitaker B, Sakthivel SK, Kamili S, Rose LE, Lowe L, Real-time reverse transcription-PCR assay panel for Middle East respiratory syndrome coronavirus. J Clin Microbiol. 2014;52:67–75. DOIPubMed
- Kraaij-Dirkzwager M, Timen A, Dirksen K, Gelinck L, Leyten E, Groeneveld P, Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014. Euro Surveill. 2014;19:20817 .PubMed
- Xu RH, He JF, Evans MR, Peng GW, Field HE, Yu DW, Epidemiologic clues to SARS origin in China. Emerg Infect Dis. 2004;10:1030–7.DOIPubMed
- Zhao Z, Zhang F, Xu M, Huang K, Zhong W, Cai W, Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med Microbiol. 2003;52:715–20. DOIPubMed
- Wang M, Yan M, Xu H, Liang W, Kan B, Zheng B, SARS-CoV infection in a restaurant from palm civet. Emerg Infect Dis. 2005;11:1860–5.DOIPubMed
- Song HD, Tu CC, Zhang GW, Wang SY, Zheng K, Lei LC, Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci U S A. 2005;102:2430–5. DOIPubMed
- Briese T, Mishra N, Jain K, Zalmout IS, Jabado OJ, Karesh WB, Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia. MBio. 2014;5:e01146–14.DOIPubMed
- Nowotny N, Kolodziejek J. Middle East respiratory syndrome coronavirus (MERS-CoV) in dromedary camels, Oman, 2013. Euro Surveill.2014;19:20781 .PubMed
- Breban R, Riou J, Fontanet A. Interhuman transmissibility of Middle East respiratory syndrome coronavirus: estimation of pandemic risk. Lancet.2013;382:694–9. DOIPubMed
- Scales DC, Green K, Chan AK, Poutanen SM, Foster D, Nowak K, Illness in intensive care staff after brief exposure to severe acute respiratory syndrome. Emerg Infect Dis. 2003;9:1205–10. DOIPubMed
- Wong TH, Dearlove BL, Hedge J, Giess AP, Piazza P, Trebes A, Whole genome sequencing and de novo assembly identifies Sydney-like variant noroviruses and recombinants during the winter 2012/2013 outbreak in England. Virol J. 2013;10:335. DOIPubMed
- Yu IT, Li Y, Wong TW, Tam W, Chan AT, Lee JH, Evidence of airborne transmission of the severe acute respiratory syndrome virus. N Engl J Med.2004;350:1731–9. DOIPubMed
- Lee N, Hui D, Wu A, Chan P, Cameron P, Joynt GM, A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med.2003;348:1986–94 . DOIPubMed
Figures
Table
Suggested citation for this article: Breakwell L, Pringle K, Chea N, Allen D, Allen S, Richards S, et al. Lack of transmission among close contacts of patient with imported case of Middle East respiratory syndrome into the United States, 2014. Emerg Infect Dis. 2015 Jul [date cited].http://dx.doi.org/10.3201/eid2107.150054
1These authors contributed equally to this article.
No hay comentarios:
Publicar un comentario