sábado, 14 de febrero de 2015

Ahead of Print -Epidemiology of Human Mycobacterium bovis Disease, California, USA, 2003–2011 - Volume 21, Number 3—March 2015 - Emerging Infectious Disease journal - CDC

full-text ►

Ahead of Print -Epidemiology of Human Mycobacterium bovis Disease, California, USA, 2003–2011 - Volume 21, Number 3—March 2015 - Emerging Infectious Disease journal - CDC

CDC. Centers for Disease Control and Prevention. CDC 24/7: Saving Lives. Protecting People.

Volume 21, Number 3—March 2015


Epidemiology of Human Mycobacterium bovis Disease, California, USA, 2003–2011

Mark GallivanComments to Author , Neha Shah, and Jennifer Flood
Author affiliations: California Department of Public Health, Richmond, California, USA (M. Gallivan, N. Shah, J. Flood)Centers for Disease Control and Prevention, Atlanta, Georgia, USA (N. Shah)


We conducted a retrospective review of California tuberculosis (TB) registry and genotyping data to evaluate trends, analyze epidemiologic differences between adult and child case-patients withMycobacterium bovis disease, and identify risk factors for M. bovis disease. The percentage of TB cases attributable to M. bovis increased from 3.4% (80/2,384) in 2003 to 5.4% (98/1,808) in 2011 (p = 0.002). All (6/6) child case-patients with M. bovis disease during 2010–2011 had >1 parent/guardian who was born in Mexico, compared with 38% (22/58) of child case-patients with M. tuberculosis disease (p = 0.005). Multivariate analysis of TB case-patients showed Hispanic ethnicity, extrapulmonary disease, diabetes, and immunosuppressive conditions, excluding HIV co-infection, were independently associated with M. bovisdisease. Prevention efforts should focus on Hispanic binational families and adults with immunosuppressive conditions. Collection of additional risk factors in the national TB surveillance system and expansion of whole-genome sequencing should be considered.
Mycobacterium bovis, part of the Mycobacterium tuberculosis complex, is a zoonotic pathogen that can cause tuberculosis (TB) disease in a broad range of mammalian hosts (1). TB disease caused by M. bovis is clinically, radiographically, and pathologically indistinguishable from TB caused by M. tuberculosis (2). M. bovistransmission to humans most frequently occurs through consumption of unpasteurized, contaminated dairy products, but person-to-person transmission has been reported (3,4). The consumption of contaminated unpasteurized dairy products has been suggested as a major contributor to human M. bovis disease for several reasons: 1) the near absence of M. bovis disease among infants <12 months of age; 2) a high percentage of extrapulmonary disease, particularly abdominal disease, among patients with M. bovis disease; and 3) an association between positive interferon-γ release assay results and consumption of unpasteurized dairy products (511).
In the United States, 1%–2% of all human TB cases are attributable to M. bovis infection (7), but in certain geographic regions and communities, human M. bovis infection accounts for a much higher percentage of the cases. During 2001–2005, M. bovis accounted for nearly 10% of culture-positive TB isolates in San Diego, California, USA, including 54% of those from children (<15 years of age) and 8% of those from adults (>15 years of age) (8). Nearly all (97%) case-patients with M. bovis disease were among the Hispanic population, and 60% of those case-patients were born in Mexico (8). During 2001–2004, an investigation in New York, New York, USA, showed a high prevalence of TB caused by M. bovis among the Hispanic community. New York investigators reported that 57% of M. bovis case-patients were born in Mexico, and 83% of the interviewed case-patients consumed unpasteurized cheeses produced in Mexico while living in the United States (12).
The internationally recognized genotypic method for identifying M. bovis is spacer oligonucleotide typing (13). In 2004, the CDC (Centers for Disease Control and Prevention) Tuberculosis Genotyping Program (now called the National Tuberculosis Genotyping Service,http://www.cdc.gov/tb/publications/factsheets/statistics/genotyping.htm) began spoligotyping M. tuberculosis complex isolates from US patients with culture-positive TB (14). In California, the percentage of culture-positive isolates spoligotyped each year has gradually increased from 35% in 2004 to 92% in 2011. The incompleteness and variability (by geographic location) of spoligotype testing over this period exclude trend analysis and population-basedM. bovis studies using this genotypic method. However, pyrazinamide monoresistance can serve as a proxy measure for M. bovis because M. bovis is intrinsically resistant to pyrazinamide but pyrazinamide monoresistance is rare among M. tuberculosis isolates (7,15,16). A recent national study on pyrazinamide resistance showed that 0.7% (196/27,428) M. tuberculosis isolates were pyrazinamide monoresistant (15). Since 2003, ≈97% of all culture-positive TB isolates in California have had initial (i.e., pretreatment) drug susceptibility testing for pyrazinamide, isoniazid, and rifampin.
M. bovis disease is of particular concern because of the high percentage of cases among children and because of its association with zoonotic and foodborne transmission, HIV co-infection, and poor treatment outcomes compared with M. tuberculosis disease (6,1719). Further investigation into M. bovis disease is needed to understand the epidemiology of cases among children and adults, its association with immunosuppressive conditions, and the association of those conditions with treatment outcomes. We conducted a retrospective review of California TB surveillance data to evaluate trends for TB cases attributable to M. bovis, evaluate epidemiologic differences between M. bovis TB cases in adults and children, and identify risk factors associated with M. bovis disease compared with M. tuberculosis disease. We also conducted an evaluation of the accuracy of pyrazinamide monoresistance as a proxy measure for M. bovis disease by using surveillance and genotyping data.
Mr. Gallivan is an epidemiologist in the Immunization Branch, California Department of Public Health. His research interests include TB infection treatment strategies, public health practice, and vaccine-preventable disease epidemiology.


We acknowledge the efforts of local health departments and laboratories in California who collected and reported the data used in this study.
This project was supported in part by the appointment of M.G. to the Applied Epidemiology Fellowship Program administered by the Council of State and Territorial Epidemiologists and by funding from CDC (cooperative agreement no. 1U38HM000414).


  1. LoBue PAEnarson DAThoen COTuberculosis in humans and animals: an overview. Int J Tuberc Lung Dis2010;14:10758.PubMed
  2. Grange JMMycobacterium bovis infection in human beings. Tuberculosis (Edinb)2001;81:717 and. DOIPubMed
  3. Sunder SLanotte PGodreuil SMartin CBoschiroli MLBesnier JMHuman-to-human transmission of tuberculosis caused by Mycobacterium bovisin immunocompetent patients. J Clin Microbiol2009;47:124951 . DOIPubMed
  4. Yates MDGrange JMIncidence and nature of human tuberculosis due to bovine tubercle bacilli in South-East England: 1977–1987. Epidemiol Infect1988;101:2259DOIPubMed
  5. Majoor CJMagis-Escurra Cvan Ingen JBoeree MJvan Soolingen DEpidemiology of Mycobacterium bovis disease in humans, the Netherlands, 1993−2007. Emerg Infect Dis2011;17:45763DOIPubMed
  6. LoBue PABetacourt WPeter CMoser KSEpidemiology of Mycobacterium bovis disease in San Diego County, 1994–2000. Int J Tuberc Lung Dis.2003;7:1805 .PubMed
  7. Hlavsa MCMoonan PKCowan LSNavin TRKammerer JSMorlock GPHuman tuberculosis due to Mycobacterium bovis in the United States, 1995–2005. Clin Infect Dis2008;47:16875DOIPubMed
  8. Rodwell TCMoore MMoser KSBrodine SKStrathdee SATuberculosis from Mycobacterium bovis in binational communities, United States.Emerg Infect Dis2008;14:90916DOIPubMed
  9. Dankner WMDavis CEMycobacterium bovis as a significant cause of tuberculosis in children residing along the United States–Mexico border in the Baja California region. Pediatrics2000;105:E79DOIPubMed
  10. Garfein RSBurgos JLRodriquez-Lainz ABrodine SPietrucha ARondinelli ALatent tuberculosis infection in a migrant agricultural community in Baja California, Mexico. J Immigr Minor Health2011;13:9407DOIPubMed
  11. Besser REPakiz BSchulte JMAlvarado SZell ERKenyon TARisk factors for positive Mantoux tuberculin skin tests in children in San Diego, California: evidence for boosting and possible foodborne transmission. Pediatrics2001;108:30510DOIPubMed
  12. Center for Disease Control and PreventionHuman tuberculosis caused by Mycobacterium bovis—New York City, 2001–2004. MMWR Morb Mortal Wkly Rep2005;54:6058 .PubMed
  13. Ramos DFTavares LAlmeida da Silva PEMolecular typing of Mycobacterium bovis isolates: a review. Braz J Microbiol2014;45:36572.DOIPubMed
  14. Ohkusa YShigematsu MTaniguchi KOkabe NNotice to readers: new CDC program for rapid genotyping of Mycobacterium tuberculosis isolates.MMWR Morb Mortal Wkly Rep2005;54(Suppl):4752.PubMed
  15. Kurbatova EVCavanaugh JSDalton TClick SCegielski JPEpidemiology of pyrazinamide-resistant tuberculosis in the United States, 1999–2009.Clin Infect Dis2013;57:108193DOIPubMed
  16. de Jong BCOnipede APym ASGagneux SAga RSDeRiemer KDoes resistance to pyrazinamide accurately indicate the presence ofMycobacterium bovis? J Clin Microbiol2005;43:35302DOIPubMed
  17. Park DQin HJain SPreziosi MMinuto JJMathews WCTuberculosis due to Mycobacterium bovis in patients coinfected with human immunodeficiency virus. Clin Infect Dis2010;51:13436DOIPubMed
  18. Majoor CJMagis-Escurra Cvan IJ, Boeree MJ, van SD. Epidemiology of Mycobacterium bovis disease in humans, the Netherlands, 1993–2007.Emerg Infect Dis2011;17:45763DOIPubMed
  19. LoBue PAMoser KSTreatment of Mycobacterium bovis infected tuberculosis patients: San Diego County, California, United States, 1994–2003.Int J Tuberc Lung Dis2005;9:3338 .PubMed
  20. Kamerbeek JSchouls LKolk Avan Agterveld Mvan Soolingen DKuijper SSimultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol1997;35:90714 .PubMed
  21. United States Census Bureau. Population estimates; current estimate data [cited 2014 April 29]. http://www.census.gov/popest/data/index.htm
  22. Rodwell TCKapasi AJMoore MMilian-Suazo FHarris BGuerrero LPTracing the origins of Mycobacterium bovis tuberculosis in humans in the USA to cattle in Mexico using spoligotyping. Int J Infect Dis2010;14(Suppl 3):e12935DOIPubMed
  23. Kinde HMikolon ARodriguez-Lainz AAdams CWalker RLCernek-Hoskins SRecovery of salmonella, Listeria monocytogenes, andMycobacterium bovis from cheese entering the United States through a noncommercial land port of entry. J Food Prot2007;70:4752 .PubMed
  24. Code of Federal Regulations. Title 9—animals and animal products [9 CFR]. Animal and Plant Health Inspection Service, Department of Agriculture. Subchapter D—exportation and importation of animals (including poultry) and animal products. Part 93—importation of certain animals, birds, fish, and poultry, and certain animal, bird, and poultry products; requirements for means of conveyance and shipping containers [9 CFR 93]. Subpart D— ruminants; Mexico 9, 93.427–93.429; 2000 Jan 1 [cited 2014 April 29]. http://www.gpo.gov/fdsys/granule/CFR-2000-title9-vol1/CFR-2000-title9-vol1-sec93-427
  25. Palmer MVWaters WR. Bovine tuberculosis and the establishment of an eradication program in the United States: role of veterinarians. Vet Med Int. 2011;2011:816345. PMID: 21647341
  26. Walker TMIp CLHarrel RHEvans JTKapatai GDedicoat MJWhole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. Lancet Infect Dis2013;13:13746DOIPubMed
  27. de Kantor INLoBue PAThoen COHuman tuberculosis caused by Mycobacterium bovis in the United States, Latin America and the Caribbean. Int J Tuberc Lung Dis2010;14:136973 .PubMed
  28. LoBue PALeClair JJMoser KSContact investigation for cases of pulmonary Mycobacterium bovis. Int J Tuberc Lung Dis.2004;8:86872.PubMed
  29. Lighter JRigaud MDiagnosing childhood tuberculosis: traditional and innovative modalities. Curr Probl Pediatr Adolesc Health Care.2009;39:6188DOIPubMed
  30. Andersen PDoherty TMThe success and failure of BCG - implications for a novel tuberculosis vaccine. Nat Rev Microbiol2005;3:65662.DOIPubMed
  31. Fine PEVariation in protection by BCG: implications of and for heterologous immunity. Lancet1995;346:133945DOIPubMed
  32. García-Rodríguez JFÁlvarez-Díaz HLorenzo-García MVMariño-Callejo AFernandez-Rial ÁSesma-Sánchez PExtrapulmonary tuberculosis: epidemiology and risk factors. Enferm Infecc Microbiol Clin2011;29:5029DOIPubMed
  33. Colditz GABerkey CSMosteller FBrewer TFWilson MEBurdick EThe efficacy of bacillus Calmette-Guerin vaccination of newborns and infants in the prevention of tuberculosis: meta-analyses of the published literature. Pediatrics1995;96:2935 .PubMed



Suggested citation for this article: Gallivan M, Shah N, Flood J. Epidemiology of human Mycobacterium bovis disease, California, USA, 2003–2011. Emerg Infect Dis. 2015 Mar [date cited]. http://dx.doi.org/10.3201/eid2103.141539
DOI: 10.3201/eid2103.141539

No hay comentarios:

Publicar un comentario