domingo, 16 de agosto de 2009
OBESITY 3.3. - Preventing Chronic Disease: July 2009: 09_0017
SPECIAL TOPIC
Complex Systems Modeling for Obesity Research
TABLE OF CONTENTS
• Abstract
• The Obesity Epidemic as a Complex System
• Implications for Science and Policy Design
• Modeling Techniques for Complex Systems
• Data Requirements for Models
• Application and Future Directions
• Conclusion
• Acknowledgments
• Author Information
• References
Ross A. Hammond, PhD
Suggested citation for this article: Hammond RA. Complex systems modeling for obesity research. Prev Chronic Dis 2009;6(3).
http://www.cdc.gov/pcd/issues/2009/jul/09_0017.htm. Accessed [date].
Abstract
The obesity epidemic has grown rapidly into a major public health challenge, in the United States and worldwide. The scope and scale of the obesity epidemic motivate an urgent need for well-crafted policy interventions to prevent further spread and (potentially) to reverse the epidemic. Yet several attributes of the epidemic make it an especially challenging problem both to study and to combat. This article shows that these attributes — the great breadth in levels of scale involved, the substantial diversity of relevant actors, and the multiplicity of mechanisms implicated — are characteristic of a complex adaptive system. It argues that the obesity epidemic is driven by such a system and that lessons and techniques from the field of complexity science can help inform both scientific study of obesity and effective policies to combat obesity. The article gives an overview of modeling techniques especially well suited to study the rich and complex dynamics of obesity and to inform policy design.
The Obesity Epidemic as a Complex System
The obesity epidemic has grown rapidly over the last few decades into a major public health challenge in the United States and, increasingly, worldwide. Between 1970 and 2000, the percentage of obese Americans doubled to almost 30% (1), with two-thirds of Americans now overweight (2). Similar obesity epidemics are under way across the globe (3-8). Worldwide, nearly half a billion were overweight or obese in 2002 (9).
The growth of the obesity epidemic has significant implications for public health (10) and health care costs (11). Obesity in children is also growing rapidly (9,12), presenting immediate health risks and suggesting the potential for even larger future increases in adult obesity unless the epidemic is contained. One public health researcher argues that obesity may become “the gravest and most poorly controlled public health threat of our time” (13). Both the scope and the scale of the obesity epidemic motivate an urgent need for well-crafted interventions to prevent further spread and to (potentially) lower current rates of overweight and obesity.
Yet 3 attributes of the obesity epidemic make it an especially challenging problem — both to study and to combat. First is the huge range in the levels of scale involved (14). Empirical evidence suggests important (and potentially interconnected) effects at levels including genes (15-18), neurobiology (19-22), psychology (23-28), family structure and influences (29-32), social context and social norms (33-45), environment (46,47), markets (11,48,49), and public policy (50,51). Not only do these levels entail very different pathways of effect and diverse methodologies for measurement, they are also usually the province of very different fields of science (from genetics to neuroscience to economics and political science).
A second challenging characteristic is the diversity of actors who potentially affect individual energy balance (and thus population levels of obesity). These might include families, schools, retailers, industry, government agencies, the media, health care providers, city planners, architects, employers, insurance companies, and many others. Each of these actors has different goals, motivations, constraints, sources of information, modes of decision making, and types of connection to other actors. Interventions may affect each differently, and each has a different sphere of potential influence as an agent of change. Interventions that do not take into account the diversity of these actors cannot leverage potential synergies. They also run the risk that successful interventions in one area may be counteracted by responses of other actors.
A third challenge is the multiplicity of mechanisms at work in the obesity epidemic. For example, the role of dopamine-mediated reward and the mesocorticolimbic pathway in eating is well documented (52,53). Genes such as the dopamine-4 (DRD4) and dopamine-2 (DRD2) receptors can influence the dopamine system and affect feeding and reward (15-17). Individual choices about food are also influenced by neurobiological systems, such as executive control and the dopamine-striatal system (19-22), and by measurable psychological factors such as dietary disinhibition (23-25) and sensitivity to reward (26-28). Early childhood and prenatal family influence can play a strong role in subsequent obesity through several mechanisms (29-32). Social norms and social contextual influences affect food consumption directly (33-36) and indirectly via body image (39-43) and social capital (44,45). Obesity is known to spread through social networks (37-38) by an as-yet-unidentified mechanism. Prices can strongly influence food choice (11,48,49), as can built environment (46,47).
Even where mechanisms of effect are clear, the linkages and feedback between these mechanisms are not well studied or well understood. Furthermore, no single mechanism appears able to account for all that we know about the obesity epidemic. For example, markets and prices provide a compelling explanation of the overall upward trend in obesity rates but do not explain the important disparities in incidence by sociodemographic groups (54,55), nor provide insight into why obesity appears to move through social networks (37-38). Neurobiological and genetic mechanisms help explain the resilience of obesity at both the social and individual levels but have difficulty explaining the timing and speed of the epidemic and its spatial clustering. Environmental explanations capture the spatial and demographic variability in obesity incidence but cannot explain its apparent spread across longer distances through networks or its variation within spatially coherent demographic groups.
In sum, the obesity epidemic is a particularly challenging problem because it results from a system containing a diverse set of actors, at many different levels of scale, with differing individual motivations and priorities. This system has many moving parts and operative pathways, which interact to produce rich variation in outcomes that cannot be reduced to a single mechanism. Taken together, these features are classic characteristics of a complex adaptive system (CAS).
A CAS is one composed of many heterogeneous pieces, interacting with each other in subtle or nonlinear ways that strongly influence the overall behavior of the system. The CAS perspective has proved enlightening in the study of economic, political, social, physical, and biological systems (56-58). CASs share many general properties, including:
Individuality: CASs are often multilevel but are usually driven by decentralized, local interaction of constituent parts. Each level is composed of autonomous actors who adapt their behavior individually. Actors can be people but also larger social units such as firms and governments, and smaller biological units such as cells and genes.
Heterogeneity: Substantial diversity among actors at each level — in goals, rules, adaptive repertoire, and constraints — can shape dynamics of a CAS in important ways.
Interdependence: CASs usually contain many interdependent interacting pieces, connected across different levels. System dynamics are often characterized by feedback and substantial nonlinearity.
Emergence: CASs are often characterized by emergent, unexpected phenomena — patterns of collective behavior that form in the system are difficult to predict from separate understanding of each individual element.
Tipping: CASs are also often characterized by “tipping.” Nonlinearity means that the impacts caused by small changes can seem hugely out of proportion. The system may spend long periods in a state of relative stability, yet be easily “tipped” to another state by a disturbance that pushes it across a threshold.
These characteristics make the study and management of complex systems especially challenging. Valuable insights about such systems, along with strategies for intervention, can be gained from the relatively new, interdisciplinary field of complexity science.
Implications for Science and Policy Design
The complexity of the systems underlying the obesity epidemic has important implications for scientific study of obesity, for policy and the design of interventions aimed at changing the course of the obesity epidemic, and for modeling to facilitate both of these goals.
Scientific study
Linkages and feedback between mechanisms (and between levels of analysis) are often important determinants of dynamics in complex systems. In the case of obesity, these links are not well understood, although many individual mechanisms operating at a single level have been identified. Because no one mechanism appears able to completely explain all important aspects of the obesity epidemic (its timing, scope, variance, distribution, etc), greater understanding may require approaches that combine mechanisms and explore their interplay. This means that division of scientific study by traditional disciplinary boundaries may be hampering a full understanding of the problem — new insight can come from cross-disciplinary approaches. Similarly, methods and approaches that are systems oriented and multilevel in scope are needed (14,59,60) to capture linkages between mechanisms at different levels. See below for discussion of suitable methods.
Policy and intervention design
Complexity can be a significant challenge for policy makers and for the design of interventions. The interconnected dynamics of a complex system may lead policy design to overlook potential synergies, and successful interventions in a single area may be counteracted by responses elsewhere in the system. Policies that do not take into account the full set of actors and their responses can even backfire dramatically, as illustrated by the Lake Victoria catastrophe (61,62). In 1960, a nonnative species of fish (the Nile perch) was introduced into Lake Victoria, with the policy goal of improving the health and wealth of the communities of people surrounding the lake in Kenya, Tanzania, and Uganda through this new source of protein. But the policy did not take into account the other actors in the system — specifically, the other organisms that formed the complex ecosystems of the lake. Although the perch initially appeared to be a success, its introduction into the lake set off a chain reaction in the lake ecosystem. The perch wiped out the native cichlid species of fish, which were crucial in controlling a species of snail living in the lake. The snails flourished, and with them the larvae of schistosomes, to whom they play host. Schistosomes are the cause of the often-fatal disease of bilharzia in humans, and their exploding numbers created a public health and economic crisis. Thus, the original policy goal (improving the health of the surrounding communities of humans) backfired because the reaction of another set of actors in the system was not anticipated. Efforts to reduce obesity might face similar difficulties if systemic diversity is not factored into policy design.
Other characteristics of complex systems pose challenges for policy design as well. Nonlinearity makes prediction difficult — multiple forces shape the future, and their effects do not aggregate simply. Heterogeneity means that any given intervention may not work equally well across all contexts or subgroups. Decentralized dynamics can be a challenge because many conventional policy levers and intervention implementations are centralized or “top-down.”
Yet despite the challenges it poses, complexity can also be a source of great opportunity for policy makers and for intervention design. Nonlinearity is an opportunity, since a coincidence of several small events can generate a large systemic effect. Near the right thresholds, even very small interventions can have a big impact on the system, “tipping” it to a new state. Understanding heterogeneity in a system can also create an opportunity because it allows interventions to be very closely targeted for maximum impact. And decentralized dynamics are an advantage if they can be harnessed to allow interventions to disseminate on their own through direct imitation or interaction between actors in the system. Tools developed for the study of complex systems can help uncover their underlying dynamics, identifying which areas will be most amenable to policy intervention and where leverage may best be applied for any particular policy goal.
abrir aquí para acceder al documento CDC completo:
Preventing Chronic Disease: July 2009: 09_0017
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario