miércoles, 9 de octubre de 2019

Unusual Cancers of Childhood Treatment (PDQ®) 5/6 –Health Professional Version - National Cancer Institute

Unusual Cancers of Childhood Treatment (PDQ®)–Health Professional Version - National Cancer Institute

National Cancer Institute



Unusual Cancers of Childhood Treatment (PDQ®)–Health Professional Version

Genital/Urinary Tumors

Unusual pediatric genital/urinary tumors include the following:
The prognosis, diagnosis, classification, and treatment of these genital/urinary tumors are discussed below. It must be emphasized that these tumors are seen very infrequently in patients younger than 15 years, and most of the evidence is derived from case series.

Carcinoma of the Bladder

Clinical Presentation

Urothelial bladder neoplasms are extremely rare in children; the most common presenting symptom is hematuria.[1]

Risk Factors

Bladder cancer in adolescents may develop as a consequence of alkylating-agent chemotherapy given for other childhood tumors or leukemia.[2-4] The association between cyclophosphamide and bladder cancer is the only established relationship between a specific anticancer drug and a solid tumor.[2]

Histology

Histologic classification of these neoplasms includes the following:
  • Urothelial papillomas.
  • Papillary neoplasms of low malignant potential.
  • Low-grade urothelial carcinoma.
  • High-grade urothelial carcinoma.
An alternative designation is transitional cell carcinoma of the bladder. The most common histology is papillary urothelial neoplasm of low malignant potential, while high-grade, invasive urothelial carcinomas are extremely rare in young patients.[4-8]

Treatment and Outcome

Treatment options for childhood bladder cancer include the following:
  1. Surgery.
In contrast to adults, most pediatric bladder carcinomas are low grade, superficial, and have an excellent prognosis after transurethral resection.[6-9] Squamous cell carcinoma and more aggressive carcinomas, however, have been reported and may require a more aggressive surgical approach.[7,10-12]

Treatment Options Under Clinical Evaluation

Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, refer to the ClinicalTrials.gov website.
The following is an example of a national and/or institutional clinical trial that is currently being conducted:
  • APEC1621 (NCT03155620) (Pediatric MATCH: Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders): NCI-COG Pediatric Molecular Analysis for Therapeutic Choice (MATCH), referred to as Pediatric MATCH, will match targeted agents with specific molecular changes identified using a next-generation sequencing targeted assay of more than 4,000 different mutations across more than 160 genes in refractory and recurrent solid tumors. Children and adolescents aged 1 to 21 years are eligible for the trial.
    Tumor tissue from progressive or recurrent disease must be available for molecular characterization. Patients with tumors that have molecular variants addressed by treatment arms included in the trial will be offered treatment on Pediatric MATCH. Additional information can be obtained on the NCI website and ClinicalTrials.gov website.
(Refer to the PDQ summary on adult Bladder Cancer Treatment for more information.)

Testicular Cancer (Non–Germ Cell)

Incidence and Clinical Presentation

Testicular tumors are very rare in young boys and account for an incidence of 1% to 2% of all childhood tumors.[13,14] The most common testicular tumors are benign teratomas followed by malignant nonseminomatous germ cell tumors. (Refer to the PDQ summary on Childhood Extracranial Germ Cell Tumors Treatment for more information.)
Non–germ cell tumors such as sex cord–stromal tumors are exceedingly rare in prepubertal boys. In a small series, gonadal stromal tumors accounted for 8% to 13% of pediatric testicular tumors.[15,16] Most gonadal stromal tumors present as a painless testicular mass, while 10% to 20% of patients may have endocrine manifestations such as precocious puberty.[17] In newborns and infants, juvenile granulosa cell and Sertoli cell tumors are the most common stromal cell tumor. Juvenile granulosa cell tumors usually present in infancy (median age, 6 days) and Sertoli cell tumors present later in infancy (median age, 7 months). In older males, Leydig cell tumors are more common.[18] In a report of 12 patients with Leydig cell tumors (aged 4.2–14.7 years), precocious puberty was the presenting symptom in 7 of 12 patients.[19][Level of evidence: 3iiA] Large cell calcifying Sertoli cell tumors may indicate an underlying genetic predisposition, such as Peutz-Jeghers syndrome or Carney complex. These tumors may occur in both testes, and some patients may have a slow and indolent course.[20]

Prognosis

The prognosis for sex cord–stromal tumors is usually excellent after orchiectomy.[17,21,22]; [23][Level of evidence: 3iiiA] In a review of the literature, 79 patients younger than 12 years were identified. No patient had high-risk pathological findings after orchiectomy, and none had evidence of occult metastatic disease, suggesting a role for a limited surveillance strategy.[24][Level of evidence: 3iiiA]

Treatment

Treatment options for testicular cancer (non-germ cell) include the following:
  1. Surgery.
There are conflicting data about malignant potential in older males. Most case reports suggest that in pediatric patients, these tumors can be treated with surgery alone.[21][Level of evidence: 3iii]; [25][Level of evidence: 3iiiA]; [17][Level of evidence: 3iiiDii] It is prudent to check alpha-fetoprotein (AFP) levels before surgery. Elevated AFP levels are usually indicative of a malignant germ cell tumor. However, AFP levels and decay in levels are often difficult to interpret in infants younger than 1 year.[26]
Evidence (surgery):
  1. In a study of patients prospectively reported to the German Maligne Keimzelltumoren (MAKEI) registry, 42 patients with sex cord–stromal tumors were identified. All tumors were confined to the testes. Patients were treated with surgery alone, according to specific germ cell tumor guidelines.[23][Level of evidence: 3iiiA]
    • There were no recurrences.
  2. A French registry identified 11 boys with localized sex cord–stromal testicular tumors. All 11 boys were treated with surgery alone.[27][Level of evidence: 3iA]
    • There were no recurrences.
  3. The benign behavior of pediatric non–germ cell testicular tumors has led to reports of testis-sparing surgery.[28-30] In one series of patients with Leydig cell tumors (aged 4.2–14.7 years), 3 of 12 patients were treated with enucleation alone, and 9 patients were treated with orchiectomy. All patients were alive at the last follow-up.[19][Level of evidence: 3iiA]
However, given the rarity of this tumor, the surgical approach in pediatrics has not been well defined.

Treatment Options Under Clinical Evaluation

Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, refer to the ClinicalTrials.gov website.
The following is an example of a national and/or institutional clinical trial that is currently being conducted:
  • APEC1621 (NCT03155620) (Pediatric MATCH: Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders): NCI-COG Pediatric Molecular Analysis for Therapeutic Choice (MATCH), referred to as Pediatric MATCH, will match targeted agents with specific molecular changes identified using a next-generation sequencing targeted assay of more than 4,000 different mutations across more than 160 genes in refractory and recurrent solid tumors. Children and adolescents aged 1 to 21 years are eligible for the trial.
    Tumor tissue from progressive or recurrent disease must be available for molecular characterization. Patients with tumors that have molecular variants addressed by treatment arms included in the trial will be offered treatment on Pediatric MATCH. Additional information can be obtained on the NCI website and ClinicalTrials.gov website.

Ovarian Cancer (Non–Germ Cell)

Most ovarian masses in children are not malignant.
The most common neoplasms are germ cell tumors, followed by epithelial tumors, stromal tumors, and then other tumors such as Burkitt lymphoma.[31-34]
Most malignant ovarian tumors occur in girls aged 15 to 19 years.[35]

Epithelial Ovarian Neoplasia

Histology, Clinical Presentation, and Prognosis
Ovarian tumors derived from malignant epithelial elements include the following:
  • Serous cystomas.
  • Mucinous cystomas.
  • Endometrial tumors.
  • Clear cell tumors.
Within each classification, subtypes include benign tumors, tumors with low malignant potential or borderline tumors, and adenocarcinomas. Most ovarian tumors in the pediatric age range are benign and borderline,[36] with rare malignant lesions in adolescence.[37] Studies have reported the following:
  • In the Italian prospective multicenter study of rare tumors (TREP project), of the 16 patients identified over 14 years, 8 patients had benign tumors (7 mucinous cystadenoma and 1 serous cystadenoma) and 8 patients had borderline tumors (2 serous and 6 mucinous).[38][Level of evidence: 3iA] No malignant tumors were identified. High levels of cancer antigen (CA)-125 were detected in 6 of 15 patients.
  • In another series of 19 patients younger than 21 years with epithelial ovarian neoplasms, the average age at diagnosis was 19.7 years. Dysmenorrhea and abdominal pain were the most common presenting symptoms. Low malignant potential or well-differentiated tumors were diagnosed in 84% of patients, 79% of the patients had stage I disease with a 100% survival rate, and only those who had small cell anaplastic carcinoma died.[39][Level of evidence: 3iiiA]
Girls with ovarian carcinoma (epithelial ovarian neoplasia) fare better than do adults with similar histology, probably because girls usually present with low-stage disease.[39,40] The potential association with genetic predisposition (e.g., BRCA mutation) in pediatric patients has not yet been studied.
Treatment
Treatment options for epithelial ovarian neoplasia include the following:
  1. Surgery alone.
Treatment of epithelial ovarian neoplasia is based on stage and histology. Most pediatric and adolescent patients have stage I disease. In the TREP study,[38] of the eight patients with benign tumors, seven patients were stage I and one patient was stage III. Of the eight patients with borderline tumors, three patients were stage I and five patients were stage III (on the basis of washings and omental implants). All 16 patients were treated with surgery alone. Fifteen patients are alive without disease; the one death was not from ovarian cancer.
Treatment options for malignant ovarian epithelial cancer include the following:
  1. Surgery.
  2. Radiation therapy.
  3. Chemotherapy.
Treatment of malignant ovarian epithelial cancer is stage-related and follows adult protocols; it may include surgery, radiation therapy, and chemotherapy. (Refer to the PDQ summary on adult Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment for more information.)

Sex Cord–Stromal Tumors

Histology and Molecular Features
Ovarian sex cord–stromal tumors are a heterogeneous group of rare tumors that derive from the gonadal non–germ cell component.[41] Histologic subtypes display some areas of gonadal differentiation and include juvenile (and, rarely, adult) granulosa cell tumors, Sertoli-Leydig cell tumors, and sclerosing stromal tumors. Other histological subtypes, such as steroid cell tumor, sex cord tumor with annular tubules, or thecoma, are exceedingly rare. Ovarian Sertoli-Leydig cell tumors in children and adolescents are commonly associated with the presence of germline DICER1 mutations and may be a manifestation of the familial pleuropulmonary blastoma syndrome.[42]
Clinical Presentation
The clinical presentation and prognosis of sex cord–stromal tumors varies by histology. In all entities, metastatic spread occurs rarely and if present, is usually limited to the peritoneal cavity.[41] Distant metastases mostly occur in relapse situations.[43] Some tumors may be associated with hormone secretion; for example, estrogen in granulosa cell tumors or androgens in Sertoli-Leydig cell tumors.[27]
Diagnostic Evaluation
In the United States, these tumors may be registered in the Testicular and Ovarian Stromal Tumor registry.[44] In Europe, patients are prospectively registered in the national rare tumor groups.[44,45] The recommendations regarding diagnostic work-up, staging, and therapeutic strategy have been harmonized between these registries.[44]
Prognostic Factors
In a report from the German MAKEI study, 54 children and adolescents with prospectively registered sex cord–stromal tumors were analyzed. Forty-eight patients presented with stage I tumors and six patients had peritoneal metastases. While overall prognosis was favorable, patients at risk could be identified by stage (stage Ic, preoperative rupture, stages II and III) and histological criteria such as high mitotic count.[46]
Treatment
Treatment options for sex cord–stromal tumors include the following:
  1. Surgery.
  2. Chemotherapy.
A French registry identified 38 girls younger than 18 years with ovarian sex cord tumors.[27] Complete surgical resection was achieved in 23 of 38 girls who did not receive adjuvant treatment. Two patients recurred, one patient's tumor responded to chemotherapy, and the other patient died. Fifteen girls had tumor rupture and/or ascites. Eleven of the 15 patients received chemotherapy and did not recur; of the four patients who did not receive chemotherapy, all recurred and two died.
Juvenile Granulosa Cell Tumors
Incidence
The most common histologic subtype in girls younger than 18 years is juvenile granulosa cell tumors (median age, 7.6 years; range, birth to 17.5 years).[47,48] Juvenile granulosa cell tumors represent about 5% of ovarian tumors in children and adolescents and are distinct from the granulosa cell tumors seen in adults.[41,49-51]
Risk Factors
Juvenile granulosa cell tumors have been reported in children with Ollier disease and Maffucci syndrome.[52,53]
Clinical Presentation
Patients with juvenile granulosa cell tumors present with the following:[54,55]
  • Precocious puberty (most common; caused by estrogen secretion).
  • Abdominal pain.
  • Abdominal mass.
  • Ascites.
Treatment
Treatment options for juvenile granulosa cell tumors include the following:
  1. Surgery. As many as 90% of children with juvenile granulosa cell tumors will have low-stage disease (stage I) by International Federation of Gynecology and Obstetrics (FIGO) criteria and are usually curable with unilateral salpingo-oophorectomy alone.
  2. Chemotherapy. Patients with spontaneous tumor rupture or malignant ascites (FIGO stage IC2, IC3), advanced disease (FIGO stages II–IV), and those with high mitotic activity tumors have a poorer prognosis and require chemotherapy.[27,45,56] Use of a cisplatin-based chemotherapy regimen has been reported in both the adjuvant and recurrent disease settings with some success.[45,47,51,57,58][Level of evidence: 3iiiA]
Sertoli-Leydig Cell Tumors
Incidence, Risk Factors, and Clinical Presentation
Sertoli-Leydig cell tumors are rare in young girls and are more frequently seen in adolescents. They may secrete androgens and, thus, present with virilization, secondary amenorrhea,[59] or precocious puberty.[60] These tumors may also be associated with Peutz-Jeghers syndrome, but more frequently are a part of the DICER1-tumor spectrum.[42,61,62] Patients with Sertoli-Leydig cell tumors should be evaluated for germline DICER1 mutations. If a germline DICER1 mutation is found, regular follow-up for ovarian and other tumors such as thyroid disease (multinodular goiter, carcinoma) and genetic counseling should be considered.[62,63]
Treatment and Outcome
Treatment options for Sertoli-Leydig cell tumors include the following:
  1. Surgery. Surgery is the primary treatment for Sertoli-Leydig cell tumors and is the only treatment for low-stage disease (FIGO stage Ia), with essentially 100% event-free survival (EFS).[27][Level of evidence: 3iiiA] However, up to 10% of patients may develop metachronous contralateral tumors, particularly in the context of underlying DICER1 germline mutations.[64]
  2. Chemotherapy. Patients with Sertoli-Leydig cell tumors with abdominal spillage during surgery, spontaneous tumor rupture, or metastatic disease (FIGO stages IC, II, III, and IV) are treated with cisplatin-based combination chemotherapy, although the impact of chemotherapy has not been studied in clinical trials.[27,65] An additional study reported on 40 women with FIGO stage I or Ic Sertoli-Leydig cell tumors of the ovary, with an average age of 28 years.[66][Level of evidence: 3iiA] Of 34 patients with intermediate or poor differentiation, 23 patients received postoperative chemotherapy (most regimens included cisplatin); none recurred. Of the 11 patients who did not receive postoperative chemotherapy, two recurred; both had tumors that were salvaged with chemotherapy.
A study of 44 patients from the European Cooperative Study Group on Pediatric Rare Tumors showed that prognosis of Sertoli-Leydig cell tumors was determined by stage and histopathologic differentiation.[65]

Small Cell Carcinoma of the Ovary, Hypercalcemia-Type

Incidence, Molecular Features, and Prognosis
Small cell carcinomas of the ovary are exceedingly rare and aggressive tumors and may be associated with hypercalcemia.[67]
SMARCA4 mutations have been described in these tumors, putting these in the context of rhabdoid tumors.[68]
The clinical course is usually aggressive and prognosis is poor.
Treatment
Treatment options for small cell carcinoma of the ovary include the following:
  1. Aggressive multimodality therapy. Successful treatment with aggressive therapy has been reported in a few cases.[67,69][Level of evidence: 3iiB]; [70,71][Level of evidence: 3iiiA]
  2. Tazemetostat. Tazemetostat is an EZH2 inhibitor that demonstrates activity against preclinical models of small cell carcinoma of the ovary with SMARCA4 loss.[72] Two patients with small cell carcinoma of the ovary and SMARCA4 loss were enrolled in a phase I trial of tazemetostat; one patient achieved a partial response and one patient achieved prolonged stable disease.[73]

Treatment Options Under Clinical Evaluation

Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, refer to the ClinicalTrials.gov website.
The following are examples of national and/or institutional clinical trials that are currently being conducted:
  • APEC1621 (NCT03155620) (Pediatric MATCH: Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders): NCI-COG Pediatric Molecular Analysis for Therapeutic Choice (MATCH), referred to as Pediatric MATCH, will match targeted agents with specific molecular changes identified using a next-generation sequencing targeted assay of more than 4,000 different mutations across more than 160 genes in refractory and recurrent solid tumors. Children and adolescents aged 1 to 21 years are eligible for the trial.
    Tumor tissue from progressive or recurrent disease must be available for molecular characterization. Patients with tumors that have molecular variants addressed by treatment arms included in the trial will be offered treatment on Pediatric MATCH. Additional information can be obtained on the NCI website and ClinicalTrials.gov website.

Carcinoma of the Cervix and Vagina

Incidence, Risk Factors, and Clinical Presentation

Adenocarcinoma of the cervix and vagina is rare in childhood and adolescence, with fewer than 50 reported cases.[34,74] Two-thirds of the cases are related to exposure to diethylstilbestrol in utero.
The median age at presentation is 15 years, with a range of 7 months to 18 years, and most patients present with vaginal bleeding. Adults with adenocarcinoma of the cervix or vagina will present with stage I or stage II disease 90% of the time. In children and adolescents, there is a high incidence of stage III and stage IV disease (24%). This difference may be explained by the practice of routine pelvic examinations in adults and the hesitancy to perform pelvic exams in children.

Treatment and Outcome

Treatment options for carcinoma of the cervix and vagina include the following:
  1. Surgery.
  2. Radiation therapy, for residual microscopic disease or lymphatic metastases.
The treatment of choice is surgical resection,[75] followed by radiation therapy for residual microscopic disease or lymphatic metastases. The role of chemotherapy in management is unknown, although drugs commonly used in the treatment of gynecologic malignancies, carboplatin and paclitaxel, have been used.[76]
The 3-year EFS for all stages is 71% ± 11%; for stage I and stage II, the EFS is 82% ± 11%, and for stage III and stage IV, the EFS is 57% ± 22%.[74]

Treatment Options Under Clinical Evaluation

Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, refer to the ClinicalTrials.gov website.
The following is an example of a national and/or institutional clinical trial that is currently being conducted:
  • APEC1621 (NCT03155620) (Pediatric MATCH: Targeted Therapy Directed by Genetic Testing in Treating Pediatric Patients with Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphomas, or Histiocytic Disorders): NCI-COG Pediatric Molecular Analysis for Therapeutic Choice (MATCH), referred to as Pediatric MATCH, will match targeted agents with specific molecular changes identified using a next-generation sequencing targeted assay of more than 4,000 different mutations across more than 160 genes in refractory and recurrent solid tumors. Children and adolescents aged 1 to 21 years are eligible for the trial.
    Tumor tissue from progressive or recurrent disease must be available for molecular characterization. Patients with tumors that have molecular variants addressed by treatment arms included in the trial will be offered treatment on Pediatric MATCH. Additional information can be obtained on the NCI website and ClinicalTrials.gov website.
References
  1. Saltsman JA, Malek MM, Reuter VE, et al.: Urothelial neoplasms in pediatric and young adult patients: A large single-center series. J Pediatr Surg 53 (2): 306-309, 2018. [PUBMED Abstract]
  2. Johansson SL, Cohen SM: Epidemiology and etiology of bladder cancer. Semin Surg Oncol 13 (5): 291-8, 1997 Sep-Oct. [PUBMED Abstract]
  3. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. International Agency for Research on Cancer: Overall evaluations of carcinogenicity: an updating of IARC monographs, volumes 1 to 42. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Supplement 7. Lyon, France: International Agency for Research on Cancer, 1987.
  4. Di Carlo D, Ferrari A, Perruccio K, et al.: Management and follow-up of urothelial neoplasms of the bladder in children: a report from the TREP project. Pediatr Blood Cancer 62 (6): 1000-3, 2015. [PUBMED Abstract]
  5. Alanee S, Shukla AR: Bladder malignancies in children aged <18 years: results from the Surveillance, Epidemiology and End Results database. BJU Int 106 (4): 557-60, 2010. [PUBMED Abstract]
  6. Paner GP, Zehnder P, Amin AM, et al.: Urothelial neoplasms of the urinary bladder occurring in young adult and pediatric patients: a comprehensive review of literature with implications for patient management. Adv Anat Pathol 18 (1): 79-89, 2011. [PUBMED Abstract]
  7. Stanton ML, Xiao L, Czerniak BA, et al.: Urothelial tumors of the urinary bladder in young patients: a clinicopathologic study of 59 cases. Arch Pathol Lab Med 137 (10): 1337-41, 2013. [PUBMED Abstract]
  8. Berrettini A, Castagnetti M, Salerno A, et al.: Bladder urothelial neoplasms in pediatric age: experience at three tertiary centers. J Pediatr Urol 11 (1): 26.e1-5, 2015. [PUBMED Abstract]
  9. Fine SW, Humphrey PA, Dehner LP, et al.: Urothelial neoplasms in patients 20 years or younger: a clinicopathological analysis using the world health organization 2004 bladder consensus classification. J Urol 174 (5): 1976-80, 2005. [PUBMED Abstract]
  10. Sung JD, Koyle MA: Squamous cell carcinoma of the bladder in a pediatric patient. J Pediatr Surg 35 (12): 1838-9, 2000. [PUBMED Abstract]
  11. Lezama-del Valle P, Jerkins GR, Rao BN, et al.: Aggressive bladder carcinoma in a child. Pediatr Blood Cancer 43 (3): 285-8, 2004. [PUBMED Abstract]
  12. Korrect GS, Minevich EA, Sivan B: High-grade transitional cell carcinoma of the pediatric bladder. J Pediatr Urol 8 (3): e36-8, 2012. [PUBMED Abstract]
  13. Hartke DM, Agarwal PK, Palmer JS: Testicular neoplasms in the prepubertal male. J Mens Health Gend 3 (2): 131-8, 2006.
  14. Ahmed HU, Arya M, Muneer A, et al.: Testicular and paratesticular tumours in the prepubertal population. Lancet Oncol 11 (5): 476-83, 2010. [PUBMED Abstract]
  15. Pohl HG, Shukla AR, Metcalf PD, et al.: Prepubertal testis tumors: actual prevalence rate of histological types. J Urol 172 (6 Pt 1): 2370-2, 2004. [PUBMED Abstract]
  16. Schwentner C, Oswald J, Rogatsch H, et al.: Stromal testis tumors in infants. a report of two cases. Urology 62 (6): 1121, 2003. [PUBMED Abstract]
  17. Cecchetto G, Alaggio R, Bisogno G, et al.: Sex cord-stromal tumors of the testis in children. A clinicopathologic report from the Italian TREP project. J Pediatr Surg 45 (9): 1868-73, 2010. [PUBMED Abstract]
  18. Carmignani L, Colombo R, Gadda F, et al.: Conservative surgical therapy for leydig cell tumor. J Urol 178 (2): 507-11; discussion 511, 2007. [PUBMED Abstract]
  19. Luckie TM, Danzig M, Zhou S, et al.: A Multicenter Retrospective Review of Pediatric Leydig Cell Tumor of the Testis. J Pediatr Hematol Oncol 41 (1): 74-76, 2019. [PUBMED Abstract]
  20. Lai JP, Lee CC, Crocker M, et al.: Isolated Large Cell Calcifying Sertoli Cell Tumor in a Young Boy, not Associated with Peutz-Jeghers Syndrome or Carney Complex. Ann Clin Lab Res 3 (1): 2, 2015. [PUBMED Abstract]
  21. Agarwal PK, Palmer JS: Testicular and paratesticular neoplasms in prepubertal males. J Urol 176 (3): 875-81, 2006. [PUBMED Abstract]
  22. Dudani R, Giordano L, Sultania P, et al.: Juvenile granulosa cell tumor of testis: case report and review of literature. Am J Perinatol 25 (4): 229-31, 2008. [PUBMED Abstract]
  23. Hofmann M, Schlegel PG, Hippert F, et al.: Testicular sex cord stromal tumors: analysis of patients from the MAKEI study. Pediatr Blood Cancer 60 (10): 1651-5, 2013. [PUBMED Abstract]
  24. Rove KO, Maroni PD, Cost CR, et al.: Pathologic Risk Factors in Pediatric and Adolescent Patients With Clinical Stage I Testicular Stromal Tumors. J Pediatr Hematol Oncol 37 (8): e441-6, 2015. [PUBMED Abstract]
  25. Thomas JC, Ross JH, Kay R: Stromal testis tumors in children: a report from the prepubertal testis tumor registry. J Urol 166 (6): 2338-40, 2001. [PUBMED Abstract]
  26. Blohm ME, Vesterling-Hörner D, Calaminus G, et al.: Alpha 1-fetoprotein (AFP) reference values in infants up to 2 years of age. Pediatr Hematol Oncol 15 (2): 135-42, 1998 Mar-Apr. [PUBMED Abstract]
  27. Fresneau B, Orbach D, Faure-Conter C, et al.: Sex-Cord Stromal Tumors in Children and Teenagers: Results of the TGM-95 Study. Pediatr Blood Cancer 62 (12): 2114-9, 2015. [PUBMED Abstract]
  28. Cosentino M, Algaba F, Saldaña L, et al.: Juvenile granulosa cell tumor of the testis: a bilateral and synchronous case. Should testis-sparing surgery be mandatory? Urology 84 (3): 694-6, 2014. [PUBMED Abstract]
  29. Kao CS, Cornejo KM, Ulbright TM, et al.: Juvenile granulosa cell tumors of the testis: a clinicopathologic study of 70 cases with emphasis on its wide morphologic spectrum. Am J Surg Pathol 39 (9): 1159-69, 2015. [PUBMED Abstract]
  30. Emre S, Ozcan R, Elicevik M, et al.: Testis sparing surgery for Leydig cell pathologies in children. J Pediatr Urol 13 (1): 51.e1-51.e4, 2017. [PUBMED Abstract]
  31. Morowitz M, Huff D, von Allmen D: Epithelial ovarian tumors in children: a retrospective analysis. J Pediatr Surg 38 (3): 331-5; discussion 331-5, 2003. [PUBMED Abstract]
  32. Schultz KA, Sencer SF, Messinger Y, et al.: Pediatric ovarian tumors: a review of 67 cases. Pediatr Blood Cancer 44 (2): 167-73, 2005. [PUBMED Abstract]
  33. Aggarwal A, Lucco KL, Lacy J, et al.: Ovarian epithelial tumors of low malignant potential: a case series of 5 adolescent patients. J Pediatr Surg 44 (10): 2023-7, 2009. [PUBMED Abstract]
  34. You W, Dainty LA, Rose GS, et al.: Gynecologic malignancies in women aged less than 25 years. Obstet Gynecol 105 (6): 1405-9, 2005. [PUBMED Abstract]
  35. Brookfield KF, Cheung MC, Koniaris LG, et al.: A population-based analysis of 1037 malignant ovarian tumors in the pediatric population. J Surg Res 156 (1): 45-9, 2009. [PUBMED Abstract]
  36. Childress KJ, Patil NM, Muscal JA, et al.: Borderline Ovarian Tumor in the Pediatric and Adolescent Population: A Case Series and Literature Review. J Pediatr Adolesc Gynecol 31 (1): 48-54, 2018. [PUBMED Abstract]
  37. Hazard FK, Longacre TA: Ovarian surface epithelial neoplasms in the pediatric population: incidence, histologic subtype, and natural history. Am J Surg Pathol 37 (4): 548-53, 2013. [PUBMED Abstract]
  38. Virgone C, Alaggio R, Dall'Igna P, et al.: Epithelial Tumors of the Ovary in Children and Teenagers: A Prospective Study from the Italian TREP Project. J Pediatr Adolesc Gynecol 28 (6): 441-6, 2015. [PUBMED Abstract]
  39. Tsai JY, Saigo PE, Brown C, et al.: Diagnosis, pathology, staging, treatment, and outcome of epithelial ovarian neoplasia in patients age < 21 years. Cancer 91 (11): 2065-70, 2001. [PUBMED Abstract]
  40. Nasioudis D, Alevizakos M, Holcomb K, et al.: Malignant and borderline epithelial ovarian tumors in the pediatric and adolescent population. Maturitas 96: 45-50, 2017. [PUBMED Abstract]
  41. Schneider DT, Jänig U, Calaminus G, et al.: Ovarian sex cord-stromal tumors--a clinicopathological study of 72 cases from the Kiel Pediatric Tumor Registry. Virchows Arch 443 (4): 549-60, 2003. [PUBMED Abstract]
  42. Schultz KA, Pacheco MC, Yang J, et al.: Ovarian sex cord-stromal tumors, pleuropulmonary blastoma and DICER1 mutations: a report from the International Pleuropulmonary Blastoma Registry. Gynecol Oncol 122 (2): 246-50, 2011. [PUBMED Abstract]
  43. Wessalowski R, Spaar HJ, Pape H, et al.: Successful liver treatment of a juvenile granulosa cell tumor in a 4-year-old child by regional deep hyperthermia, systemic chemotherapy, and irradiation. Gynecol Oncol 57 (3): 417-22, 1995. [PUBMED Abstract]
  44. Schultz KA, Schneider DT, Pashankar F, et al.: Management of ovarian and testicular sex cord-stromal tumors in children and adolescents. J Pediatr Hematol Oncol 34 (Suppl 2): S55-63, 2012. [PUBMED Abstract]
  45. Schneider DT, Calaminus G, Harms D, et al.: Ovarian sex cord-stromal tumors in children and adolescents. J Reprod Med 50 (6): 439-46, 2005. [PUBMED Abstract]
  46. Schneider DT, Calaminus G, Wessalowski R, et al.: Ovarian sex cord-stromal tumors in children and adolescents. J Clin Oncol 21 (12): 2357-63, 2003. [PUBMED Abstract]
  47. Calaminus G, Wessalowski R, Harms D, et al.: Juvenile granulosa cell tumors of the ovary in children and adolescents: results from 33 patients registered in a prospective cooperative study. Gynecol Oncol 65 (3): 447-52, 1997. [PUBMED Abstract]
  48. Capito C, Flechtner I, Thibaud E, et al.: Neonatal bilateral ovarian sex cord stromal tumors. Pediatr Blood Cancer 52 (3): 401-3, 2009. [PUBMED Abstract]
  49. Bouffet E, Basset T, Chetail N, et al.: Juvenile granulosa cell tumor of the ovary in infants: a clinicopathologic study of three cases and review of the literature. J Pediatr Surg 32 (5): 762-5, 1997. [PUBMED Abstract]
  50. Zaloudek C, Norris HJ: Granulosa tumors of the ovary in children: a clinical and pathologic study of 32 cases. Am J Surg Pathol 6 (6): 503-12, 1982. [PUBMED Abstract]
  51. Vassal G, Flamant F, Caillaud JM, et al.: Juvenile granulosa cell tumor of the ovary in children: a clinical study of 15 cases. J Clin Oncol 6 (6): 990-5, 1988. [PUBMED Abstract]
  52. Tanaka Y, Sasaki Y, Nishihira H, et al.: Ovarian juvenile granulosa cell tumor associated with Maffucci's syndrome. Am J Clin Pathol 97 (4): 523-7, 1992. [PUBMED Abstract]
  53. Sampagar AA, Jahagirdar RR, Bafna VS, et al.: Juvenile granulosa cell tumor associated with Ollier disease. Indian J Med Paediatr Oncol 37 (4): 293-295, 2016 Oct-Dec. [PUBMED Abstract]
  54. Kalfa N, Patte C, Orbach D, et al.: A nationwide study of granulosa cell tumors in pre- and postpubertal girls: missed diagnosis of endocrine manifestations worsens prognosis. J Pediatr Endocrinol Metab 18 (1): 25-31, 2005. [PUBMED Abstract]
  55. Gell JS, Stannard MW, Ramnani DM, et al.: Juvenile granulosa cell tumor in a 13-year-old girl with enchondromatosis (Ollier's disease): a case report. J Pediatr Adolesc Gynecol 11 (3): 147-50, 1998. [PUBMED Abstract]
  56. Wu H, Pangas SA, Eldin KW, et al.: Juvenile Granulosa Cell Tumor of the Ovary: A Clinicopathologic Study. J Pediatr Adolesc Gynecol 30 (1): 138-143, 2017. [PUBMED Abstract]
  57. Powell JL, Connor GP, Henderson GS: Management of recurrent juvenile granulosa cell tumor of the ovary. Gynecol Oncol 81 (1): 113-6, 2001. [PUBMED Abstract]
  58. Schneider DT, Calaminus G, Wessalowski R, et al.: Therapy of advanced ovarian juvenile granulosa cell tumors. Klin Padiatr 214 (4): 173-8, 2002 Jul-Aug. [PUBMED Abstract]
  59. Arhan E, Cetinkaya E, Aycan Z, et al.: A very rare cause of virilization in childhood: ovarian Leydig cell tumor. J Pediatr Endocrinol Metab 21 (2): 181-3, 2008. [PUBMED Abstract]
  60. Choong CS, Fuller PJ, Chu S, et al.: Sertoli-Leydig cell tumor of the ovary, a rare cause of precocious puberty in a 12-month-old infant. J Clin Endocrinol Metab 87 (1): 49-56, 2002. [PUBMED Abstract]
  61. Zung A, Shoham Z, Open M, et al.: Sertoli cell tumor causing precocious puberty in a girl with Peutz-Jeghers syndrome. Gynecol Oncol 70 (3): 421-4, 1998. [PUBMED Abstract]
  62. Schultz KA, Harris A, Messinger Y, et al.: Ovarian tumors related to intronic mutations in DICER1: a report from the international ovarian and testicular stromal tumor registry. Fam Cancer 15 (1): 105-10, 2016. [PUBMED Abstract]
  63. Schultz KAP, Williams GM, Kamihara J, et al.: DICER1 and Associated Conditions: Identification of At-risk Individuals and Recommended Surveillance Strategies. Clin Cancer Res 24 (10): 2251-2261, 2018. [PUBMED Abstract]
  64. Schultz KAP, Harris AK, Finch M, et al.: DICER1-related Sertoli-Leydig cell tumor and gynandroblastoma: Clinical and genetic findings from the International Ovarian and Testicular Stromal Tumor Registry. Gynecol Oncol 147 (3): 521-527, 2017. [PUBMED Abstract]
  65. Schneider DT, Orbach D, Cecchetto G, et al.: Ovarian Sertoli Leydig cell tumours in children and adolescents: an analysis of the European Cooperative Study Group on Pediatric Rare Tumors (EXPeRT). Eur J Cancer 51 (4): 543-50, 2015. [PUBMED Abstract]
  66. Gui T, Cao D, Shen K, et al.: A clinicopathological analysis of 40 cases of ovarian Sertoli-Leydig cell tumors. Gynecol Oncol 127 (2): 384-9, 2012. [PUBMED Abstract]
  67. Distelmaier F, Calaminus G, Harms D, et al.: Ovarian small cell carcinoma of the hypercalcemic type in children and adolescents: a prognostically unfavorable but curable disease. Cancer 107 (9): 2298-306, 2006. [PUBMED Abstract]
  68. Witkowski L, Goudie C, Foulkes WD, et al.: Small-Cell Carcinoma of the Ovary of Hypercalcemic Type (Malignant Rhabdoid Tumor of the Ovary): A Review with Recent Developments on Pathogenesis. Surg Pathol Clin 9 (2): 215-26, 2016. [PUBMED Abstract]
  69. Pressey JG, Kelly DR, Hawthorne HT: Successful treatment of preadolescents with small cell carcinoma of the ovary hypercalcemic type. J Pediatr Hematol Oncol 35 (7): 566-9, 2013. [PUBMED Abstract]
  70. Christin A, Lhomme C, Valteau-Couanet D, et al.: Successful treatment for advanced small cell carcinoma of the ovary. Pediatr Blood Cancer 50 (6): 1276-7, 2008. [PUBMED Abstract]
  71. Kanwar VS, Heath J, Krasner CN, et al.: Advanced small cell carcinoma of the ovary in a seventeen-year-old female, successfully treated with surgery and multi-agent chemotherapy. Pediatr Blood Cancer 50 (5): 1060-2, 2008. [PUBMED Abstract]
  72. Chan-Penebre E, Armstrong K, Drew A, et al.: Selective Killing of SMARCA2- and SMARCA4-deficient Small Cell Carcinoma of the Ovary, Hypercalcemic Type Cells by Inhibition of EZH2: In Vitro and In Vivo Preclinical Models. Mol Cancer Ther 16 (5): 850-860, 2017. [PUBMED Abstract]
  73. Italiano A, Soria JC, Toulmonde M, et al.: Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol 19 (5): 649-659, 2018. [PUBMED Abstract]
  74. McNall RY, Nowicki PD, Miller B, et al.: Adenocarcinoma of the cervix and vagina in pediatric patients. Pediatr Blood Cancer 43 (3): 289-94, 2004. [PUBMED Abstract]
  75. Abu-Rustum NR, Su W, Levine DA, et al.: Pediatric radical abdominal trachelectomy for cervical clear cell carcinoma: a novel surgical approach. Gynecol Oncol 97 (1): 296-300, 2005. [PUBMED Abstract]
  76. Baykara M, Benekli M, Erdem O, et al.: Clear cell adenocarcinoma of the uterine cervix: a case report and review of the literature. J Pediatr Hematol Oncol 36 (2): e131-3, 2014. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario