martes, 22 de octubre de 2019

Ectopic expression of BIRC5-targeting miR-101-3p overcomes bone marrow stroma-mediated drug resistance in multiple myeloma cells | BMC Cancer | Full Text

Ectopic expression of BIRC5-targeting miR-101-3p overcomes bone marrow stroma-mediated drug resistance in multiple myeloma cells | BMC Cancer | Full Text



BMC Cancer

Ectopic expression of BIRC5-targeting miR-101-3p overcomes bone marrow stroma-mediated drug resistance in multiple myeloma cells

Abstract

Background

Multiple myeloma (MM) cells gain protection against drugs through interaction with bone marrow stromal cells (BMSCs). This form of resistance largely accounts for resistance to therapy in MM patients which warrants further exploration to identify more potential therapeutic targets.

Methods

We performed miRNA/mRNA qPCR arrays and western blotting to analyze transcriptional and translational changes in MM cells co-cultured with BMSCs. Drug cytotoxicity and apoptosis in MMGFP-BMSC co-cultures were measured using fluorescence plate reader and flowcytometry, respectively. miRNA was overexpressed in MM cell lines using Lentiviral transduction, miRNA-3’UTR binding was examined using luciferase assay.

Results

We found that BMSCs downregulated miR-101-3p and upregulated survivin (BIRC5) in MM cells. Survivin was downregulated by miR-101-3p overexpression and found to be a direct target of miR-101-3p using 3’UTR luciferase assay. Overexpression of survivin increased viability of MM cells in the presence of anti-myeloma drugs, and miR-101-3p inhibition by anti-miR against miR-101-3p upregulated survivin. Furthermore, overexpression of miR-101-3p or silencing of survivin triggered apoptosis in MM cells and sensitized them to anti-myeloma drugs in the presence of BMSCs overcoming the stroma-induced drug resistance.

Conclusions

Our study demonstrates that BMSC-induced resistance to drugs is associated with survivin upregulation which is a direct target of miR-101-3p. This study also identifies miR-101-3p-survivin interaction as a druggable target involved in stroma-mediated drug resistance in MM and suggests it for developing more efficient therapeutic strategies.

No hay comentarios:

Publicar un comentario