viernes, 9 de enero de 2015

Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation

Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation

Cover image

Nanocolumnar coatings with selective behavior towards osteoblast and Staphylococcus aureus proliferation


Bacterial colonization and biofilm formation on orthopedic implants is one of the worst scenarios in orthopedic surgery, in terms of both patient prognosis and healthcare costs. Tailoring the surfaces of implants at the nanoscale to actively promote bone bonding while avoiding bacterial colonization represents an interesting challenge to achieving better clinical outcomes. Herein, a Ti6Al4V alloy of medical grade has been coated with Ti nanostructures employing the glancing angle deposition technique by magnetron sputtering. The resulting surfaces have a high density of nanocolumnar structures, which exhibit strongly impaired bacterial adhesion that inhibits biofilm formation, while osteoblasts exhibit good cell response with similar behavior to the initial substrates. These results are discussed on the basis of a “lotus leaf effect” induced by the surface nanostructures and the different sizes and biological characteristics of osteoblasts and Staphylococcus aureus.

Graphical abstract

Full-size image (37 K)


  • Titanium nanocolumns
  • Magnetron sputtering
  • Biocompatibility
  • Antibacterial effects
  • Biofilm

Corresponding authors at: Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain. Tel.: +34 913941843.
Note to users: Uncorrected proofs are Articles in Press that have been copy edited and formatted, but have not been finalized yet. They still need to be proof-read and corrected by the author(s) and the text could still change before final publication.
Although uncorrected proofs do not have all bibliographic details available yet, they can already be cited using the year of online publication and the DOI, as follows: author(s), article title, Publication (year), DOI. Please consult the journal's reference style for the exact appearance of these elements, abbreviation of journal names and use of punctuation.
When the final article is assigned to an volumes/issues of the Publication, the Article in Press version will be removed and the final version will appear in the associated published volumes/issues of the Publication. The date the article was first made available online will be carried over.

No hay comentarios:

Publicar un comentario