Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and cellular uptake
Journal of Nanobiotechnology 2014, 12:59 doi:10.1186/s12951-014-0059-z
The electronic version of this article is the complete one and can be found online at:http://www.jnanobiotechnology.com/content/12/1/59
Received: | 6 August 2014 |
Accepted: | 11 December 2014 |
Published: | 19 December 2014 |
© 2014 Kennedy et al.; licensee BioMed Central.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Abstract
Background
Increasing use of silver nanoparticles (Ag-NPs) in various products is resulting in a greater likelihood of human exposure to these materials. Nevertheless, little is still known about the influence of carbohydrates on the toxicity and cellular uptake of nanoparticles.
Methods
Ag-NPs functionalized with three different monosaccharides and ethylene glycol were synthesized and characterised. Oxidative stress and toxicity was evaluated by protein carbonylation and MTT assay, respectively. Cellular uptake was evaluated by confocal microscopy and ICP-MS.
Results
Ag-NPs coated with galactose and mannose were considerably less toxic to neuronal-like cells and hepatocytes compared to particles functionalized by glucose, ethylene glycol or citrate. Toxicity correlated to oxidative stress but not to cellular uptake.
Conclusions
Carbohydrate coating on silver nanoparticles modulates both oxidative stress and cellular uptake, but mainly the first has an impact on toxicity. These findings provide new perspectives on modulating the bioactivity of Ag-NPs by using carbohydrates.
No hay comentarios:
Publicar un comentario