domingo, 21 de diciembre de 2014

Guidance for pharmacogenomic biomarker testing in labels of FDA-approved drugs : Genetics in Medicine : Nature Publishing Group

Guidance for pharmacogenomic biomarker testing in labels of FDA-approved drugs : Genetics in Medicine : Nature Publishing Group



Guidance for pharmacogenomic biomarker testing in labels of FDA-approved drugs

Genetics in Medicine
 
(2014)
 
doi:10.1038/gim.2014.181
Received
 
Accepted
 
Published online 

Abstract

Purpose:

The aim of this study was to compare guidance for genetic testing in US Food and Drug Administration (FDA)-approved drug labels in oncology to those of drugs for other therapeutic areas.

Methods:

We reviewed labels of all the FDA-approved drugs with labels containing pharmacogenomic information. We assessed whether genetic testing was required or recommended before prescription and, if not, the reason for pharmacogenomic labeling.

Results:

We included 140 drugs corresponding to 158 drug–biomarker pairs. Overall, 46 (29%) of 158 pairs stated a requirement or recommendation for genetic biomarker testing in the label. This proportion was higher in oncology than in other areas (62 vs. 12%; P < 0.001). For the 112 drug–biomarker pairs (including 20 in oncology) without recommendation or requirement for genetic testing, the main reasons for pharmacogenomic labeling were change in pharmacologic end points (32%) and higher risk of toxicity (30%). For 11 (10%) pairs (including 1 in oncology), a genetic biomarker was mentioned only to inform that it was not relevant. In oncology, the main reasons for pharmacogenomic labeling were higher risk of toxicity (55%) and definition of the mechanism of action (25%).

Conclusion:

Inclusion of biomarkers in drug labels does not always correspond to required or recommended genetic testing, especially outside oncology.
Genet Med advance online publication 18 December 2014

Keywords:

 
biomarkers; Food and Drug Administration; genetic testing; personalized medicine; pharmacogenetics

References

  1. Wang LMcLeod HLWeinshilboum RMGenomics and drug responseN Engl J Med2011;364:11441153.
  2. Scott SAPersonalizing medicine with clinical pharmacogeneticsGenet Med2011;13:987995.
  3. Mallal SPhillips ECarosi G, et al.; PREDICT-1 Study TeamHLA-B*5701 screening for hypersensitivity to abacavirN Engl J Med 2008;358:568579.
  4. Palomaki GEBradley LADouglas MPKolor KDotson WDCan UGT1A1 genotyping reduce morbidity and mortality in patients with metastatic colorectal cancer treated with irinotecan? An evidence-based reviewGenet Med 2009;11:2134.
  5. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group.Recommendations from the EGAPP Working Group: can tumor gene expression profiling improve outcomes in patients with breast cancer? Genet Med 2009;11:6673.
  6. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group.Recommendations from the EGAPP Working Group: testing for cytochrome P450 polymorphisms in adults with nonpsychotic depression treated with selective serotonin reuptake inhibitorsGenet Med 2007;9:819825.
  7. US Food and Drug AdministrationGenomics - Table of Pharmacogenomic Biomarkers in Drug Labeling.http://www.fda.gov/drugs/scienceresearch/researchareas/pharmacogenetics/ucm083378.htm. Accessed 20 June 2014.
  8. Abrahams ESilver MThe case for personalized medicineJ Diabetes Sci Technol2009;3:680684.
  9. Tutton RPharmacogenomic biomarkers in drug labels: what do they tell us?Pharmacogenomics 2014;15:297304.
  10. Ioannidis JPKhoury MJAre randomized trials obsolete or more important than ever in the genomic era? Genome Med 2013;5:32.
  11. US Food and Drug AdministrationGuidance for industry: warnings and precautions, contraindications, and boxed warning sections of labeling for human prescription drug and biological products—content and format.http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm075096.pdf. Accessed 20 June 2014.
  12. Cooper DYLevin SNarasimhulu SRosenthal OPhotochemical action spectrum of the terminal oxidase of mixed function oxidase systemsScience 1965;147:400402.
  13. Carson PEFlanagan CLIckes CEAlving ASEnzymatic deficiency in primaquine-sensitive erythrocytesScience 1956;124:484485.
  14. PharmGKBDrug Label Legendhttp://www.pharmgkb.org/page/drugLabelLegend. Accessed 20 June 2014.
  15. World Health Organization (WHO) Collaborating Center for Drug Statistics Methodology.ATC classification index with DDDs, 20142014http://www.whocc.no/atc_ddd_index/. Accessed 24 March, 2014.
  16. R Core TeamR: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2013http://www.R-project.org/. Accessed 21 March, 2014.
  17. Haga SMills RMoaddeb JPharmacogenetic information for patients on drug labels.Pharmgenomics Pers Med 2014;7:297305.
  18. Sadée WDai ZPharmacogenetics/genomics and personalized medicineHum Mol Genet2005;14 Spec No. 2:R207R214.
  19. Preskorn SHKane CPLobello K, et al. Cytochrome P450 2D6 phenoconversion is common in patients being treated for depression: implications for personalized medicineJ Clin Psychiatry 2013;74:614621.
  20. Stergiopoulos KBrown DLGenotype-guided vs clinical dosing of warfarin and its analogues: meta-analysis of randomized clinical trialsJAMA Intern Med2014;174:13301338.
  21. Osnabrugge RLHead SJZijlstra F, et al. A systematic review and critical assessment of 11 discordant meta-analyses on reduced-function CYP2C19 genotype and risk of adverse clinical outcomes in clopidogrel usersGenet Med 2014; e-pub ahead of print 19 June 2014.
  22. Malottki KBiswas MDeeks JJ, et al. Stratified medicine in European Medicines Agency licensing: a systematic review of predictive biomarkersBMJ Open 2014;4:e004188.
  23. Shimazawa RIkeda MDifferences in pharmacogenomic biomarker information in package inserts from the United States, the United Kingdom and JapanJ Clin Pharm Ther2013;38:468475.
  24. Shimazawa RIkeda MApproval gap of pharmacogenomic biomarkers and in vitrocompanion diagnostics between the United States and JapanJ Clin Pharm Ther2014;39:210214.
  25. Trotta FLeufkens HGSchellens JHLaing RTafuri GEvaluation of oncology drugs at the European Medicines Agency and US Food and Drug Administration: when differences have an impact on clinical practiceJ Clin Oncol 2011;29:22662272.
  26. Lesko LJZineh IHuang SMWhat is clinical utility and why should we care? Clin Pharmacol Ther 2010;88:729733.
  27. Wang BCanestaro WJChoudhry NKClinical evidence supporting pharmacogenomic biomarker testing provided in US Food and Drug Administration drug labelsJAMA Intern Med 2014; e-pub ahead of print 13 October 2014.
  28. Tajik PZwinderman AHMol BWBossuyt PMTrial designs for personalizing cancer care: a systematic review and classificationClin Cancer Res 2013;19:45784588.
  29. Mandrekar SJSargent DJClinical trial designs for predictive biomarker validation: theoretical considerations and practical challengesJ Clin Oncol 2009;27:40274034.
  30. Janes HPepe MSBossuyt PMBarlow WEMeasuring the performance of markers for guiding treatment decisionsAnn Intern Med 2011;154:253259.
  31. Simon RMPaik SHayes DFUse of archived specimens in evaluation of prognostic and predictive biomarkersJ Natl Cancer Inst 2009;101:14461452.
  32. Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group.The EGAPP initiative: lessons learnedGenet Med 2014;16:217224.
  33. Le Tourneau CPaoletti XServant N, et al. Randomised proof-of-concept phase II trial comparing targeted therapy based on tumour molecular profiling vs conventional therapy in patients with refractory cancer: results of the feasibility part of the SHIVA trialBr J Cancer2014;111:1724.
  34. Le Tourneau CKamal MTrédan O, et al. Designs and challenges for personalized medicine studies in oncology: focus on the SHIVA trialTarget Oncol 2012;7:253265.
  35. Kummar SWilliams MLih C-J, et al. NCI MPACT: National Cancer Institute molecular profiling-based assignment of cancer therapy [abstract]J Clin Oncol 2014;32:5s.

Author information

Affiliations

  1. Centre d’Épidémiologie Clinique, Hôpital Hôtel Dieu, Assistance Publique des Hôpitaux de Paris, Paris, France

    • Alexandre Vivot,
    •  
    • Isabelle Boutron,
    •  
    • Philippe Ravaud &
    •  
    • Raphaël Porcher
  2. METHODS Team, Unit 1153, INSERM, Paris, France

    • Alexandre Vivot,
    •  
    • Isabelle Boutron,
    •  
    • Philippe Ravaud &
    •  
    • Raphaël Porcher
  3. Faculté de Médecine, University of Paris Descartes, Sorbonne Paris Cité, Paris, France

    • Isabelle Boutron,
    •  
    • Philippe Ravaud &
    •  
    • Raphaël Porcher
  4. Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA

    • Philippe Ravaud

Corresponding author

Correspondence to: 

No hay comentarios:

Publicar un comentario