Ahead of Print -Borrelia miyamotoi sensu lato Seroreactivity and Seroprevalence in the Northeastern United States - Volume 20, Number 7—July 2014 - Emerging Infectious Disease journal - CDC
Volume 20, Number 7—July 2014
Research
Borrelia miyamotoi sensu lato Seroreactivity and Seroprevalence in the Northeastern United States
Peter J. Krause , Sukanya Narasimhan, Gary P. Wormser, Alan G. Barbour, Alexander E. Platonov, Janna Brancato, Timothy Lepore, Kenneth Dardick, Mark Mamula, Lindsay Rollend, Tanner K. Steeves, Maria Diuk-Wasser, Sahar Usmani-Brown, Phillip Williamson, Denis S. Sarksyan, Erol Fikrig, Durland Fish, and the Tick Borne Diseases Group
Author affiliations: Yale School of Public Health, New Haven, Connecticut, USA (P.J. Krause, J. Brancato, L. Rollend, T.K. Steeves, M. Diuk-Wasser, D. Fish); Yale School of Medicine, New Haven (P.J. Krause, S. Narasimhan, M. Mamula, E. Fikrig); New York Medical College, Valhalla, New York, USA (G.P. Wormser);University of California, Irvine, California, USA (A.G. Barbour);Central Research Institute of Epidemiology, Moscow, Russia (A.E. Platonov); Nantucket Cottage Hospital, Nantucket, Massachusetts, USA (T. Lepore); Mansfield Family Practice, Mansfield, Connecticut, USA (K. Dardick); L2 Diagnostics, LLC, New Haven (S. Usmani-Brown); Creative Testing Solutions, Tempe, Arizona, USA (P. Williamson); State Medical Academy, Izhevsk, Russia (D.S. Sarksyan)
Abstract
Borrelia miyamotoi sensu lato, a relapsing fever Borrelia sp., is transmitted by the same ticks that transmit B. burgdorferi (the Lyme disease pathogen) and occurs in all Lyme disease–endemic areas of the United States. To determine the seroprevalence of IgG against B. miyamotoi sensu lato in the northeastern United States and assess whether serum from B. miyamotoi sensu lato–infected persons is reactive to B. burgdorferi antigens, we tested archived serum samples from area residents during 1991–2012. Of 639 samples from healthy persons, 25 were positive for B. miyamotoi sensu lato and 60 for B. burgdorferi. Samples from ≈10% of B. miyamotoi sensu lato–seropositive persons without a recent history of Lyme disease were seropositive for B. burgdorferi. Our resultsA suggest thatA human B. miyamotoiA sensu latoA infection may be common in southern New England and that B. burgdorferi antibody testing is not an effective surrogate for detecting B. miyamotoisensu lato infection.
Relapsing fever, an arthropod-borne infection caused by several Borrelia spp. spirochetes, is transmitted by ticks and lice (1,2). In 1995, Fukunaga et al. (3) discovered a novel relapsing fever spirochete in the hard-bodied (ixodid) tick Ixodes persulcatus and named it Borrelia miyamotoi. This discovery greatly expanded the potential geographic range of relapsing fever borreliae for humans. Before this finding, only soft-bodied ticks were known to transmit tick-borne relapsing fever spirochetes to humans. In 2001, a related spirochete was detected in I. scapularis ticks in the northeastern United States (4); this and similar organisms have been designated B. miyamotoi sensu lato to distinguish them from the B. miyamotoi sensu stricto isolates from Japan (5). A subsequent study showed that ticks in 15 states in the northeastern and northern midwestern regions of the United States are infected with B. miyamotoi sensu lato and have an average prevalence of infection of 1.9% (range 0–10.5%) (6). B. miyamotoi sensu lato has now been found in all tick species known to be vectors of Lyme disease, including I. pacificus in the western United States, I. ricinus in Europe, and I. persulcatus and I. ricinus in Russia (7–9). The first human cases of B. miyamotoi sensu lato infection were reported from central Russia in 2011 (9). Several reports of B. miyamotoi sensu lato infection in humans have subsequently been published, including 3 in the United States, 1 in Europe, and 1 in Russia (10–14). Some of these reports suggest that B. miyamotoi sensu lato infection causes a nonspecific, virus-like illness. B. miyamotoi sensu lato and B. burgdorferi, the agent of Lyme disease, share several antigens that might cause cross-reactivity during serologic testing, which could lead to a misdiagnosis.
There are few data on the seroprevalence of B. miyamotoi sensu lato infection. To increase knowledge of the seroprevalence of this infection, we used assays for antibodies against B. miyamotoi sensu lato glycerophosphodiester phosphodiesterase (GlpQ), a protein that is absent from all Lyme disease Borrelia species (15), for evaluation of >1,000 archived serum samples from persons living in a Lyme disease–endemic region of the United States. We also performed standard 2-tiered testing for B. burgdorferi antibodies (16). Our aim was to compare the seroprevalence of B. miyamotoi sensu lato with that of B. burgdorferi. We also sought to determine whether persons seropositive for B. miyamotoi sensu lato would also have positive results for standard B. burgdorferi antibody testing.
Dr Krause is a Senior Research Scientist in the Department of Epidemiology of Microbial Diseases at the Yale School of Public Health and the Yale School of Medicine. His research focuses on tick-borne diseases, especially those caused by Borrelia miyamotoiand Babesia microti.
Acknowledgments
Members of the Tick Borne Diseases Group: Michel Ledizet and Mary Lou Breitenstein (L2 Diagnostics, LLC, New Haven, Connecticut, USA); Thomas Clay and Kathleen Stanton (Brimfield Family Health Center, Brimfield, Massachusetts, USA); Joseph Gadbaw (Lawrence and Memorial Hospital, New London, Connecticut); Janice Miller (Island Medical Center, Block Island, Rhode Island, USA); Ludmila S. Karan (Central Research Institute of Epidemiology, Moscow, Russia); and Kristen Brao (Yale School of Public Health, New Haven).
We thank Francesica Tizard at the Yale School of Public Health for help with manuscript preparation.
This work was supported by grants (AI088079 to D.F. and P.J.K. and AI100236 to A.G.B.) from the National Institute of Allergy and Infectious Diseases, National Institutes of Health. Additional support was provided by the Gordon and Llura Gund Foundation and the G. Harold and Leila Y. Mathers Charitable Foundation.
References
- Barbour AG. Relapsing fever. In: Goodman JL, Dennis DT, Sonenshine DE, editors. Tick-borne diseases of humans. Washington (DC): ASM Press; 2005.
- Dworkin MS, Schwan TG, Anderson DE. Tick-borne relapsing fever in North America. Med Clin North Am. 2002;86:417–33 . DOI
- Fukunaga M, Takahashi Y, Tsuruta Y, Matsushita O, Ralph D, McClelland M, Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int J Syst Bacteriol. 1995;45:804–10 . DOI
- Scoles GA, Papero M, Beati L, Fish D. A relapsing fever group spirochete transmitted byIxodes scapularis ticks. Vector Borne Zoonotic Dis. 2001;1:21–34 . DOI
- Bunikis J, Tsao J, Garpmo U, Berglund J, Fish D, Barbour AG. Typing of Borrelia relapsing fever group strains. Emerg Infect Dis. 2004;10:1661–4 . DOI
- Barbour AG, Bunikis J, Travinsky B, Hoen AG, Diuk-Wasser MA, Fish D, Niche partitioning of Borrelia burgdorferi and Borrelia miyamotoi in the same tick vector and mammalian reservoir species. Am J Trop Med Hyg. 2009;81:1120–31. DOI
- Mun J, Eisen RJ, Eisen L, Lane RS. Detection of a Borrelia miyamotoi sensu lato relapsing-fever group spirochete from Ixodes pacificus in California. J Med Entomol. 2006;43:120–3. DOI
- Richter D, Schlee DB, Matuschka FR. Relapsing fever–like spirochetes infecting European vector tick of Lyme disease agent. Emerg Infect Dis. 2003;9:697–701. DOI
- Platonov AE, Karan LS, Kolyasnikova NM, Makhneva N, Toporkova MG, Maleev VV,Humans infected with the relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg Infect Dis. 2011;17:1816–23. DOI
- Gugliotta JL, Goethert HK, Berardi VP, Telford SR. Meningoencephalitis due to Borrelia miyamotoi in an elderly immunocompromised patient. N Engl J Med. 2013;368:240–5 . DOI
- Krause PJ, Narasimhan S, Wormser GP, Rollend L, Fikrig E, Lepore T, Human Borrelia miyamotoi infection in the United States. N Engl J Med. 2013;368:291–3 . DOI
- Chowdri HR, Gugliotta JL, Berardi V, Goethert H, Molloy PJ, Sterling SL, Borrelia miyamotoipresenting as human granulocytic anaplasmosis. A case report. Ann Intern Med.2013;159:21–7. DOI
- Hovius JW, de Wever B, Sohne M, Brouwer M, Coumou J, Wagemakers A, A case of meningoencephalitis by the relapsing fever spirochete Borrelia miyamotoi in Europe.Lancet. 2013;382:658. DOI
- Sarksyan DS, Platonov AE, Karan LS, Malinin IE, Khaliltova LI, Shakhov VI, Clinical presentation of "new" tick-borne borreliosis caused by Borrelia miyamotoi [In Russian].Ter Arkh. 2012;84:34–41 .
- Schwan TG, Schrumpf ME, Hinnebusch BJ, Anderson DE, Konkel ME. GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol.1996;34:2483–92 .
- Krause PJ, McKay K, Gadbaw J, Christianson D, Closter L, Lepore T, Increasing health burden of human babesiosis in endemic sites. Am J Trop Med Hyg. 2003;68:431–6 .
- Horowitz HW, Aguero-Rosenfeld ME, Holmgren D, McKenna D, Schwartz I, Cox ME, Lyme disease and human granulocytic anaplasmosis coinfection: impact of case definition on coinfection rates and illness severity. Clin Infect Dis. 2013;56:93–9 . DOI
- Barbour AG, Jasinskas A, Kayala MA, Davies DH, Steere A, Baldi P, A genome-wide proteome array reveals a limited set of immunogens in natural infections of humans and white-footed mice with Borrelia burgdorferi. Infect Immun. 2008;76:3374–89 . DOI
- Hue F, Ghalyanchi Langeroudi A, Barbour AG. Chromosome sequence of Borrelia miyamotoi, an uncultivable tick-borne agent of human infection. Genome Announc.2013;1:e00713–13.
- Liang FT, Steere AC, Marques AR, Johnson BJ, Miller JN, Philipp MT. Sensitive and specific serodiagnosis of Lyme disease by enzyme-linked immunosorbent assay with a peptide based on an immunodominant conserved region of Borrelia burgdorferi VlsE. J Clin Microbiol. 1999;37:3990–6 .
- Magnarelli LA, Meegan JM, Anderson JF, Chappell WA. Comparison of an indirect fluorescent-antibody test with an enzyme-linked immunosorbent assay for serological studies of Lyme disease. J Clin Microbiol. 1984;20:181–4 .
- Dressler F, Whalen JA, Reinhardt BN, Steere AC. Western blotting in the serodiagnosis of Lyme disease. J Infect Dis. 1993;167:392–400. DOI
- Bacon RM, Biggerstaff BJ, Schreifer M, Gilmore RD, Philipp MT, Steere AC, Serodiagnosis of Lyme disease by kinetic enzyme-linked immunosorbent assay using recombinant VlsE1 or peptide antigens of Borrelia burgdorferi compared with 2-tiered testing using whole-cell lysates. J Infect Dis. 2003;187:1187–99. DOI
- Magnarelli LA, Anderson JF, Johnson RC. Cross-reactivity in serological tests for Lyme disease and other spirochetal infections. J Infect Dis. 1987;156:183–8. DOI
- Magnarelli LA, Lawrenz M, Norris SJ, Fikrig E. Comparative reactivity of human sera to recombinant VlsE and other Borrelia burgdorferi antigens in class-specific enzyme-linked immunosorbent assays for Lyme borreliosis. J Med Microbiol. 2002;51:649–55 .
- Johnson ST, Cable RG, Tonnetti L, Spencer B, Rios J, Leiby DA. Seroprevalence of Babesia microti in blood donors from Babesia-endemic areas of the northeastern United States: 2000 through 2007. Transfusion. 2009;49:2574–82 . DOI
- Krause PJ, Telford S, Spielman A, Sikand VJ, Ryan R, Christianson D, Concurrent Lyme disease and babesiosis: evidence for increased severity and duration of illness. JAMA.1996;275:1657–60. DOI
- Krause PJ, McKay K, Thompson CA, Sikand VJ, Lentz R, Lepore T, Disease-specific diagnosis of coinfecting tick-borne zoonoses: babesiosis, human granulocytic ehrlichiosis, and Lyme disease. Clin Infect Dis. 2002;34:1184–91. DOI
- Ackermann R, Kabatzki J, Boisten HP, Steere AC, Grodzicki RL, Hartung S, Ixodes ricinusspirochete and European erythema chronicum migrans disease. Yale J Biol Med.1984;57:573–80 .
- Centers for Disease Control and Prevention. Case definitions for infectious conditions under public health surveillance. MMWR Recomm Rep. 1997;46(RR-10):1–55 .
- Zhang JR, Hardham JM, Barbour AG, Norris SJ. Antigenic variation in Lyme disease borreliae by promiscuous recombination of VMP-like sequence cassettes. Cell.1997;89:275–85. DOI
- Salkeld DJ, Cinkovich S, Nieto NC. Tick-borne pathogens in northwestern California, USA[letter]. Emerg Infect Dis. 2014;20:493–4. DOI
Figures
- Figure 1. Polyacrylamide gel electrophoresis purification (A) and Western blot analysis (B) of recombinant glycerophosphodiester phosphodiesterase (rGlpQ)A) Coomassie blue staining of purified Borrelia miyamotoi sensu lato rGlpQ (lane 1) and of...
- Figure 2. Western blot reactivity to recombinant Borrelia miyamotoi glycerophosphodiester phosphodiesterase in serum samples from 5 Borrelia miyamotoi sensu lato–seropositive patients in the northeastern United States, 1991–2012Numbers at the top of...
Tables
- Table 1. Assay results for patient samples seroreactive to Borrelia miyamotoi sensu lato antigen, northeastern United States, 1991�?"2012
- Table 2. Number of false-positive Borrelia burgdorferi assay results for participants in various relapsing fever studies
Suggested citation for this article: Krause PJ, Narasimhan S, Wormser GP, Barbour AG, Platonov AE, Brancato J, et al. Borrelia miyamotoi sensu lato seroreactivity and seroprevalence in the northeastern United States. Emerg Infect Dis. 2014 July [date cited].http://dx.doi.org/10.3201/eid2007.131587
DOI: 10.3201/eid2007.131587
1Members of the Tick Borne Diseases Group are listed at the end of this article.
No hay comentarios:
Publicar un comentario