domingo, 30 de septiembre de 2012

Schmallenberg Virus as Possible Ancestor of Shamonda Virus - - Emerging Infectious Disease journal - CDC

full-text ►
Schmallenberg Virus as Possible Ancestor of Shamonda Virus - - Emerging Infectious Disease journal - CDC

   EID cover artwork EID banner
Table of Contents
Volume 18, Number 9–October 2012

Dispatch

Schmallenberg Virus as Possible Ancestor of Shamonda Virus

Katja V. Goller1, Dirk Höper1, Horst Schirrmeier, Thomas C. Mettenleiter, and Martin BeerComments to Author 
Author affiliations: Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
Suggested citation for this article

Abstract

Schmallenberg virus (SBV), an orthobunyavirus of the Simbu serogroup, recently emerged in Europe and has been suggested to be a Shamonda/Sathuperi virus reassortant. Results of full-genome and serologic investigations indicate that SBV belongs to the species Sathuperi virus and is a possible ancestor of the reassortant Shamonda virus.
A novel virus, Schmallenberg virus (SBV), was discovered in Europe in October 2011, and since then, cases of SBV infection have been reported in sheep, cattle, and goats in several European countries (14). Preliminary phylogenetic analyses revealed that SBV is a member of the genus Orthobunyavirus within the family Bunyaviridae and is related to Simbu serogroup viruses (1). Similar to Akabane virus (AKAV), another Simbu serogroup virus, SBV can cause fatal congenital defects by infection of fetuses during a susceptible stage in pregnancy (2). Vaccines for SBV are not available. Thus, SBV poses a serious threat to naive populations of ruminant livestock in Europe.
Orthobunyaviruses are arthropod-borne viruses with a negative-stranded tripartite RNA genome comprising large (L), medium (M), and small (S) segments. Genetic reassortment occurs naturally among these viruses, which results in the emergence of new virus strains that have altered biologic properties (5). The L segment encodes the RNA-dependent RNA polymerase; antigenic determinants are the M-encoded viral surface glycoproteins Gn and Gc, which are responsible for viral attachment, cell fusion, hemagglutination, and the induction of neutralizing antibodies, and the S-encoded nucleocapsid protein N, which plays a role in complement fixation (6). In the pregenomics era, orthobunyavirus relationships were determined solely by serologic cross-reactivity analyses (7), but since DNA sequencing became available, phylogenetic relationships have additionally been assessed by comparison of partial genome sequences (8,9). However, published full-length genome sequence information is sparse, which makes in-depth phylogenetic analysis difficult. Therefore, a detailed taxonomic classification of SBV could not be made initially when the virus emerged.
The first report of SBV showed highest similarities of M- and L-segment sequences to partial Aino virus and AKAV sequences, whereas the N gene was most closely related to Shamonda virus (SHAV) (1). Additionally, results of recent investigations on complete N and M genes and partial L genes of SHAV, Douglas virus (DOUV), and Sathuperi virus (SATV) suggested that SBV is a reassortant consisting of the M segment from SATV and the S and L segments from SHAV (9). Conversely, in 2001, SHAV was described as a reassortant virus comprising the S and L segments of SATV and the M segment from the unclassified Yaba-7 virus (8). To clarify the phylogenetic relationships and classification of SBV within the Simbu serogroup, we conducted genetic and serologic investigations of its relationship to 9 other Simbu serogroup viruses.

No hay comentarios:

Publicar un comentario