Dispatch
Epizootic Spread of Schmallenberg Virus among Wild Cervids, Belgium, Fall 2011
Article Contents
Abstract
Schmallenberg virus was detected in cattle and sheep in northwestern Europe in 2011. To determine whether wild ruminants are also susceptible, we measured antibody seroprevalence in cervids (roe deer and red deer) in Belgium in 2010 and 2011. Findings indicated rapid spread among these deer since virus emergence ≈250 km away.The Study
A significant association between month of sampling and seroconversion was detected for both deer species (p = 0.0016 and 0.0083 for red and roe deer, respectively). Seroprevalence increased during weeks 40–50 of 2011: for red deer, 20.0% (95% CI 8.3–31.7) in October, 52.6% (95% CI 36.8–68.5) in November, and 54.6% (95% CI 37.6–71.5) in December and for roe deer, 34.0% (95% CI 20.5–47.6) in October, 49.1% (95% CI 35.6–62.5) in November, and 88.9% (95% CI 68.4–100) in December, thus suggesting that the virus had circulated in the areas sampled until at least mid-November (Figure 2).
This late circulation of virus might be surprising because biting midges of the genus Culicoides, which reportedly transmit SBV (4), are not usually active during cold months. However, during fall 2011, temperatures in the region were substantially higher than normal (5) and thus compatible with persistent wild-ruminant exposure to biting midges until mid-December. No association was found between seroconversion and sex of the deer (p = 0.71 and 0.85 for red and roe deer, respectively), age (p = 0.99 and 0.24), and location of sampling (p = 0.47 and 0.23). These results suggest a similar level of exposure to infected vectors and a similar degree of susceptibility to infection among all animals in the study area (13,058 km2).
In most animals that had been found dead, gross lesions were consistent with trauma (e.g., fractures, hematomas, hemoperitoneum/thorax, ruptured spleen) suggestive of impact against a vehicle. No fetus or newborn showed morphologic alterations of the neck, trunk, or limbs suggestive of arthrogryposis. No macroscopic abnormalities were seen in the cerebral cortex, cerebellum, and spinal cord. All β-actin–positive samples of these 27 fetuses and newborns remained negative for SBV RNA. Unfortunately, postmortem decay rendered fetal serum not suitable for analysis.
0>60>
Conclusions
Because the virus can infect the fetus only after the first placentome has developed and because roe deer embryos remain in diapause until January (7), it is unlikely that SBV has contaminated many roe deer fetuses. Because 90% of roe deer were already SBV positive in mid-December and because circulating antibodies prevent transplacental passage of the closest phylogenetic relatives of the virus (8), we suggest that roe deer fetuses were probably not infected. On the contrary, red deer mate in September, and the first functional placentome is established by the end of October (9); thus, 80% of pregnant red deer were exposed to the emerging virus when placental transfer was possible. Furthermore, 35% of pregnant red deer were infected in November and December, i.e., after establishment of the first placentome and before the fetus was immunocompetent. By extrapolating the rate of transplacental infection among cattle (6), we determined that 28% of these pregnancies resulted in contamination of the fetus, i.e., 10%, of expected pregnancies. Because unrestricted replication of Simbu-like viruses occurs in the central nervous system of immunologically incompetent ruminant fetuses (1), which can lead to a typical arthrogryposis/hydranencephaly syndrome, a 10% loss among fawns can be expected in 2012.
In the same geographic area, 5 years apart, 2 arboviruses have emerged: bluetongue virus serotype 8 (BTV-8) during the summer of 2006 and SBV during the summer of 2011. For each virus, Culicoides spp. midges function as vectors and infect sheep, goats, cattle, and red deer. Although most (>50%) red deer seroconverted against BTV-8, only a few (<3 a="a" and="and" at="at" btv-8-positive="btv-8-positive" deer="deer" href="http://wwwnc.cdc.gov/eid/article/18/12/12-1067_article.htm#r10" in="in" places="places" roe="roe" same="same" sampled="sampled" the="the" time="time" title="10" were="were">103>
Dr Linden is a professor in the Department of Infectious Diseases in the Veterinary Faculty of the University of Liège. Her research interests focus on wildlife diseases.
Acknowledgments
We thank the forest rangers, the scientific collaborators from the Natural and Agricultural Environmental Studies Department, the military personnel of the Technical Environmental Unit, and hunters for assistance with field work.
The study was partly supported by a grant from the Public Service of Wallonia and partly by a grant from the Research Council in Life Sciences of University of Liège.
The study was partly supported by a grant from the Public Service of Wallonia and partly by a grant from the Research Council in Life Sciences of University of Liège.
References
- Garigliany MM, Bayrou C, Kleijnen D, Cassart D, Jolly S, Linden A, Schmallenberg virus: a new Shamonda/Sathuperi-like virus on the rise in Europe. Antiviral Res. 2012;95:82–7. DOIPubMed
- Goller KV, Höper D, Schirrmeier H, Mettenleiter TC, Beer M. Schmallenberg virus as possible ancestor of Shamonda virus. Emerg Infect Dis. 2012;10:1644–6.DOI
- Hoffmann B, Scheuch M, Höper D, Jungblut R, Holsteg M, Schirrmeier H, Novel orthobunyavirus in cattle, Europe, 2011. Emerg Infect Dis. 2012;18:469–72. DOIPubMed
- ProMED-Mail. Schmallenberg virus—Europe 26 (2012). Vector, morphology. http://www.promedmail.org, archive no. 20120311.1066949.
- MeteoBelgique. Résumé Octobre 2011. La position des centres de pression et des masses d'air (à 850 hPa) [cited 2012 Sep 12]. http://www.meteobelgique.be/article/82-annee-2011/1715-resume-octobre-2011.html
- Garigliany MM, Bayrou C, Kleijnen D, Cassart D, Desmecht D. Emerging Schmallenberg virus in domestic cattle, Belgium, spring 2012. Emerg Infect Dis. 2012;18:1512–4. DOIPubMed
- Aitken RJ, Burton J, Hawkins J, Kerr-Wilson R, Short R, Steven H. Histological and ultrastructural changes in the blastocyst and reproductive tract of the roe deer, Capreolus capreolus, during delayed implantation. J Reprod Fertil. 1973;34:481–93. DOIPubMed
- Bunyaviral diseases of animals. In: OIE terrestrial manual. Paris: The Organisation; 2008. p. 1166–7.World Organisation for Animal Health
- McMahon CD, Fisher M, Mockett B, Littlejohn R. Embryo development and placentome formation during early pregnancy in red deer. Reprod Fertil Dev. 1997;9:723–30. DOIPubMed
- Linden A, Gregoire F, Nahayo A, Hanrez D, Mousset B, Massart AL, Bluetongue virus in wild deer, Belgium, 2005–2008. Emerg Infect Dis. 2010;16:833–6. DOIPubMed
Figures
Suggested citation for this article: Linden A, Desmecht D, Volpe R, Wirtgen M, Pirson J, Paternostre J, et al. Epizootic spread of Schmallenberg virus among wild cervids, Belgium, fall 2011. Emerg Infect Dis [Internet]. 2012 Dec [date cited]. http://dx.doi.org/10.3201/eid1812.121067
1These authors contributed equally to this article.
No hay comentarios:
Publicar un comentario