lunes, 26 de agosto de 2019

Childhood Hematopoietic Cell Transplantation (PDQ®) 2/3 –Health Professional Version - National Cancer Institute

Childhood Hematopoietic Cell Transplantation (PDQ®)–Health Professional Version - National Cancer Institute

National Cancer Institute



Childhood Hematopoietic Cell Transplantation (PDQ®)–Health Professional Version



Complications After HCT





Pre-HCT Comorbidities That Affect the Risk of Transplant-Related Mortality: Predictive Power of the HCT-Specific Comorbidity Index

Because of the intensity of therapy associated with the transplant process, the pretransplant clinical status of recipients (e.g., age, presence of infections or organ dysfunction, and functional status) is associated with a risk of transplant-related mortality.
The best tool to assess the impact of pretransplant comorbidities on outcomes after transplant was developed by adapting an existing comorbidity scale, the Charlson Comorbidity Index (CCI). Investigators at the Fred Hutchinson Cancer Research Center systematically defined which of the CCI elements were correlated with transplant-related mortality in adult and pediatric patients. They also determined several additional comorbidities that have predictive power specific to transplant patients.
Successful validation defined what is now termed the hematopoietic cell transplantation–specific comorbidity index (HCT-CI).[1,2] Transplant-related mortality increases with cardiac, hepatic, pulmonary, gastrointestinal, infectious, and autoimmune comorbidities, or a history of previous solid tumors (refer to Table 4).
Table 4. Definitions of Comorbidities Included in the Hematopoietic Cell Transplantation–Specific Comorbidity Index (HCT-CI)a
HCT-CI Score
123
AST/ALT = aspartate aminotransferase/alanine aminotransferase; DLCO = diffusion capacity of carbon monoxide; FEV1 = forced expiratory volume in one second; ULN = upper limit of normal.
aAdapted from Sorror et al.[1]
bOne-or-more–vessel coronary artery stenosis requiring medical treatment, stent, or bypass graft.
Arrhythmia: Atrial fibrillation or flutter, sick sinus syndrome, or ventricular arrhythmiasModerate pulmonary:DLCO and/or FEV1 66%–80% or dyspnea on slight activityHeart valve disease:Excluding mitral valve prolapse
Cardiac: Coronary artery disease,b congestive heart failure, myocardial infarction, or ejection fraction ≤50%Moderate/severe renal:Serum creatinine >2 mg/dL, on dialysis, or prior renal transplantationModerate/severe hepatic:Liver cirrhosis, bilirubin >1.5 × ULN, or AST/ALT >2.5 × ULN
Cerebrovascular disease:Transient ischemic attack or cerebrovascular accidentPeptic ulcer: Requiring treatmentPrior solid tumor: Treated at any time in the patient’s history, excluding nonmelanoma skin cancer
Diabetes: Requiring treatment with insulin or oral hypoglycemic agents but not diet aloneRheumatologic: Systemic lupus erythematosus, rheumatoid arthritis, polymyositis, mixed connective tissue disease, or polymyalgia rheumaticaSevere pulmonary: DLCO and/or FEV1 <65% or dyspnea at rest or requiring oxygen
Hepatic, mild: Chronic hepatitis, bilirubin >ULN or AST/ALT >ULN to 2.5 × ULN
Infection: Requiring continuation of antimicrobial treatment after day 0
Inflammatory bowel disease: Crohn disease or ulcerative colitis
Obesity: Body mass index >35 kg/m2
Psychiatric disturbance:Depression or anxiety requiring psychiatric consult or treatment
The predictive power of this index for both transplant-related mortality and overall survival (OS) is strong, with a hazard ratio of 3.54 (95% confidence interval [CI], 2.0–6.3) for nonrelapse mortality and 2.69 (95% CI, 1.8–4.1) for survival for patients with a score of 3 or higher, compared with those who have a score of 0. Although the original studies were performed with patients receiving intense myeloablative approaches, the HCT-CI has also been shown to be predictive of outcome for patients receiving reduced-intensity and nonmyeloablative regimens.[3] It has also been combined with disease status [4] and Karnofsky score,[5] leading to even better prediction of survival outcomes. In addition, high HCT-CI scores (>3) have been associated with a higher risk of grades 3 to 4 acute graft-versus-host disease (GVHD).[6]
Most patients assessed in the HCT-CI studies have been adults, and the comorbidities listed are skewed toward adult diseases. The relevance of this scale for pediatric and young adult recipients of HCT has been explored in the following studies:
  • A retrospective cohort study was conducted at four large centers of pediatric patients (median age, 6 years) with a wide variety of both malignant and nonmalignant disorders.[7] The HCT-CI was predictive of both nonrelapse mortality and survival, with 1-year nonrelapse mortality of 10%, 14%, and 28% and 1-year OS of 88%, 67%, and 62% for patients with scores of 0, 1 to 2, and 3 or higher, respectively.
  • A second study included young adults (aged 16–39 years) and demonstrated similar increases in mortality with higher HCT-CI scores (nonrelapse mortality of 24% and 38% and OS of 46% and 28% for patients with scores of 0–2 and 3+, respectively).[8]
  • As part of a prospective validation of the HCT-CI through the Center for International Blood and Marrow Transplant Research, 23,876 patients—including 1,755 children—who underwent transplant between 2007 and 2009 were scored and outcomes were tracked. Although adults treated with myeloablative regimens had increased mortality with scores of 1 or 2, pediatric patients did not have increased mortality until a score of 3 or higher was noted.[9]
Most of the reported comorbidities in these studies were with respiratory or hepatic conditions and infection.[7,8] In the adolescent and young adult study, patients with pre-HCT pulmonary dysfunction were at particularly high risk of comorbidity, with a 2-year OS of 29%, compared with 61% in those with normal lung function before HCT.[8]

Selected HCT-Related Acute Complications

Infectious risks and immune recovery after transplantation

Defective immune reconstitution is a major barrier to successful HCT, regardless of graft source.[10,11] Serious infections have been shown to account for a significant percentage (4%–20%) of late deaths after HCT.[12]
Factors that can significantly slow immune recovery include the following:[13]
  • Graft manipulation (removal of T cells).
  • Stem cell source (slow recovery with cord blood).
  • Chronic GVHD.
Figure 5 illustrates the immune defects, contributing transplant-related factors, and types and timing of infections that occur after allogeneic transplantation.[14]
ENLARGEChart showing phases of predictable immune suppression and associated opportunistic infections among allogeneic hematopoietic stem cell transplantation recipients.
Figure 5. Phases of predictable immune suppression with their opportunistic infections among allogeneic hematopoietic stem cell transplantation recipients. Adapted from Burik and Freifeld. This figure was published in Clinical Oncology, 3rd edition, Abeloff et al., Chapter: Infection in the severely immunocompromised patient, Pages 941–956, Copyright Elsevier (2004).
Bacterial infections tend to occur in the first few weeks after transplant during the neutropenic phase, when mucosal barriers are damaged from the conditioning regimen; there is significant ongoing study about the role of prophylactic antibacterial medications during the neutropenic phase.[15]
Prophylaxis against fungal infections is standard during the first several months after transplantation and may be considered for patients with chronic GVHD who are at high risk of fungal infection. Antifungal prophylaxis must be tailored to the patient's underlying immune status. Pneumocystis infection can occur in all patients post–bone marrow transplant, and prophylaxis is mandatory.[15]; [16][Level of evidence: 3iiiB]
After HCT, viral infections can be a major source of mortality, especially after T-cell–depleted or cord blood procedures. Types of viral infections include the following:
  • Cytomegalovirus (CMV). CMV infection has been a major cause of mortality in the past, but effective drugs to treat CMV are available, and preventive strategies, including quantitative polymerase chain reaction (PCR) monitoring followed by preemptive therapy with ganciclovir, have been developed.
  • Epstein-Barr virus (EBV). EBV rarely causes lymphoproliferative disease and is generally associated with intensive, multidrug GVHD therapy or T-cell–depleted HCT.
  • Adenovirus. Adenovirus infection is a major issue in T-cell–depleted transplantation, and monitoring by quantitative blood PCR followed by therapy with cidofovir or brincidofovir (available through a compassionate-use protocol) has led to a major decrease in morbidity.[17]
  • Other. Other viruses have been implicated in hemorrhagic cystitis (BK virus), encephalitis and poor count recovery (human herpes virus 6), and other clinical issues.[15]
Careful viral monitoring is essential during high-risk allogeneic procedures.
Late bacterial infections can occur in patients who have central lines or patients with significant chronic GVHD. These patients are susceptible to infection with encapsulated organisms, particularly pneumococcus. Despite reimmunization, these patients can sometimes develop significant infections, and continued prophylaxis is recommended until a serological response to immunizations has been documented. Occasionally, postallogeneic HCT patients can become functionally asplenic, and antibiotic prophylaxis is recommended. Patients should remain on infection prophylaxis (e.g., Pneumocystis jiroveciipneumonia prophylaxis) until immune recovery. Time to immune recovery varies, but ranges from 3 months to 9 months after autologous HCT and 9 months to 24 months after allogeneic HCT without GVHD. Patients with active chronic GVHD may have persistent immunosuppression for years. Many centers monitor T-cell subset recovery post–bone marrow transplant as a guide to infection risk.[15]
Vaccination after transplantation
Specific guidelines have been developed by international transplant and infectious disease groups for administration of vaccinations after autologous and allogeneic transplantation.[15] Comparative studies aimed at defining ideal timing of vaccination after transplantation have not been performed, but the vaccine guidelines outlined in Table 5result in protective titers in most patients who receive vaccinations. These guidelines recommend that autologous transplant recipients receive immunizations beginning at 6 months after stem cell infusion and receive live vaccines 24 months after the transplant. Patients undergoing allogeneic procedures can begin immunizations as soon as 6 months after transplant. However, many groups prefer to wait either until 12 months after the procedure for patients remaining on immune suppression or until patients are off immune suppression.
Vaccination recommendations should be reconsidered at times of local endemic or epidemic disease outbreaks. In those settings, earlier vaccination with killed vaccines may be implemented, acknowledging limited host responses.
Table 5. Vaccination Schedule for Hematopoietic Stem Cell Transplantation (HSCT) Recipientsa
Autologous HSCT6 Mob8 Mob12 Mob24 Mob
Allogeneic HSCT (if not immunized before 12 mo post-HSCT; start regardless of GVHD status or immunosuppression)12 mob (sooner if off immunosuppression)14 mob(or 2 mo after first dose)18 mob(or 6 mo after first dose)24 mob
GVHD = graft-versus-host disease; IM = intramuscular; PO = orally.
aAdapted from Tomblyn et al.,[15] Centers for Disease Control and Prevention,[18] and Kumar et al.[19]
bTimes indicated are times posttransplant (day 0).
cUse of Tdap is acceptable if DTap is not available.
dTiters may be considered for pediatric patients and patients with GVHD who received immunizations while on immune suppression (minimum 6–8 weeks after last vaccination).
eMay start as soon as 4 months post-HSCT or sooner for patients with CD4 counts >200/mcL or at any time during an epidemic. If given <6 months after HSCT, may require second dose. Children younger than 9 years require second dose, separated by 1 month.
fConsider pre- or postvaccine (at least 6–8 weeks after) titers.
gPCV 7 at 24 months only for patients with GVHD; all other patients can get PPV 23.
hPediatric patients should receive two doses at least 1 month apart.
Inactivated Vaccines
Diphtheria, tetanus, acellular pertussis (DTap)XcXcXc,d
Haemophilus influenzae (Hib)XXXd
Hepatitis B (HepB)XXXd
Inactive polio (IPV)XXXd
Influenza—seasonal injection (IM)Xe
Pneumococcal conjugate (PCV 7, PCV 13)XfXXd,f,g
Pneumococcal polysaccharide (PPV 23)Xd,f,g
Live Attenuated Vaccines (contraindicated in patients with active GVHD or on immunosuppression)
Measles, mumps, rubellaXd,h
Optional Inactivated Vaccines
Hepatitis AOptional
MeningococcalXd (for high-risk patients)
Optional Live Vaccines (contraindicated in patients with active GVHD or on immunosuppression)
Chicken pox (varicella vaccine)Optional
RabiesMay be considered at 12–24 mo if exposed
Yellow fever, tick-borne encephalitis (TBE), Japanese B encephalitisFor travel in endemic areas
Contraindicated Vaccines
Intranasal influenza (trivalent live-attenuated influenza vaccine)—household contacts and caregivers should not receive within 2 weeks before contact with HSCT recipient; shinglesbacillus Calmette-Guerin (BCG)oral polio vaccine (OPV)choleratyphoid vaccine (PO, IM)rotavirus.

Sinusoidal obstruction syndrome/veno-occlusive disease

Pathologically, sinusoidal obstructive syndrome/veno-occlusive disease of the liver (SOS/VOD) is the result of damage to the hepatic sinusoids, resulting in biliary obstruction. This syndrome has been estimated to occur in 15% to 40% of pediatric myeloablative transplantation patients.[20,21]
Risk factors include the following:[20,21]
  • Use of busulfan (especially before therapeutic pharmacokinetic monitoring).
  • Total-body irradiation.
  • Serious infection.
  • GVHD.
  • Pre-existing liver dysfunction due to hepatitis or iron overload.
SOS/VOD is defined clinically by the following:
  • Right upper quadrant pain with hepatomegaly.
  • Fluid retention (weight gain and ascites).
  • Hyperbilirubinemia.
Life-threatening SOS/VOD generally occurs soon after transplantation and is characterized by multiorgan system failure.[22] Milder, reversible forms can occur, with full recovery expected. Pediatric patients who have severe SOS/VOD without increased bilirubin have been reported;[23] therefore, it is important to be vigilant about monitoring patients who have other symptoms without increased bilirubin.
Prevention and treatment of SOS/VOD
Approaches to both prevention and treatment with agents such as heparin, protein C, and antithrombin III have been studied, with mixed results.[24] One small, retrospective, single-center study showed a benefit from corticosteroid therapy, but further validation is needed.[25] Another agent with demonstrated activity is defibrotide, a mixture of oligonucleotides with antithrombotic and fibrinolytic effects on microvascular endothelium. Defibrotide has demonstrated the following:
Defibrotide is approved by the U.S. Food and Drug Administration (FDA) for the treatment of patients who have hepatic SOS/VOD with renal or pulmonary dysfunction after HSCT.
The British Society for Blood and Marrow Transplantation (BSBMT) published evidence-guided recommendations for the diagnosis and management of SOS/VOD.[29] They recommend that biopsy be reserved for difficult cases and be performed using the transjugular approach. The BSBMT supports the use of defibrotide for the prevention of SOS/VOD (defibrotide prophylaxis is not currently part of the FDA indication), but concluded there is insufficient data to support the use of prostaglandin E1, pentoxifylline, or antithrombin. For treatment of SOS/VOD, they recommend aggressive fluid balance management, early involvement of critical care and gastroenterology specialists, and the use of defibrotide and possibly methylprednisolone, but concluded there is insufficient evidence to support the use of tissue plasminogen activator or N-acetylcysteine.[29,33] More detailed consensus recommendations for the diagnosis and management of SOS/VOD in children after HCT have been published by the Pediatric Blood and Marrow Transplant Consortium (PBMTC), who worked with the Pediatric Acute Lung Injury and Sepsis Investigators (PALISI).[34-36]

Transplant-associated microangiopathy

Although transplant-associated microangiopathy clinically mirrors hemolytic uremic syndrome, its causes and clinical course differ from those of other hemolytic uremic syndrome–like diseases. Studies have linked this syndrome with dysregulation of complement pathways.[37] Transplant-associated microangiopathy has most frequently been associated with the use of the calcineurin inhibitors tacrolimus and cyclosporine, and has been noted to occur more frequently when either of these medications are used in combination with sirolimus.[38]
Diagnostic criteria for this syndrome have been standardized and include the following:[39]
  • Presence of schistocytes on a peripheral smear.
  • Increased lactic dehydrogenase.
  • Decreased haptoglobin.
  • Thrombocytopenia with or without anemia.
Suggestive symptoms consistent with but not necessary for the diagnosis include a sudden worsening of renal function or neurologic symptoms.
Treatment of transplant-associated microangiopathy
Treatment for transplant-associated microangiopathy includes the following:
  • Cessation of the calcineurin inhibitor and substitution with other immune suppressants, if necessary.
  • Careful management of hypertension and renal damage by dialysis, if necessary, is vital.
Prognosis for normalization of kidney function when disease is caused by calcineurin inhibitors alone is generally poor; however, most transplant-associated microangiopathy associated with the combination of a calcineurin inhibitor and sirolimus has been reversed after sirolimus is stopped, and in some cases, after both medications are stopped.[38]
Some evidence suggests a role for complement modulation (c5, eculizumab therapy) in preserving renal function; further assessment of the role of this medication in treating this complication is ongoing.[40,41]

Idiopathic pneumonia syndrome

Idiopathic pneumonia syndrome is characterized by diffuse, noninfectious lung injury that occurs from 14 to 90 days after the infusion of donor cells. Possible etiologies include direct toxic effects of the conditioning regimens and occult infection leading to secretion of high levels of inflammatory cytokines into the alveoli.[42]
The incidence of this complication appears to be decreasing, possibly because of less intensive preparative regimens, better HLA matching, and better definition of occult infections through PCR testing of blood and bronchioalveolar specimens. Mortality rates of 50% to 70% have been reported;[42] however, these estimates are from the mid-1990s, and outcomes may have improved.
Diagnostic criteria include the following signs and symptoms in the absence of documented infectious organisms:[43]
  • Pneumonia.
  • Evidence of nonlobar radiographic infiltrates.
  • Abnormal pulmonary function.
Early assessment by bronchioalveolar lavage to rule out infection is important.
Treatment of idiopathic pneumonia syndrome
Traditional therapy has been high-dose methylprednisolone and pulmonary support.
Etanercept is a soluble fusion protein that joins the extracellular ligand-binding domain of the tumor necrosis factor (TNF)–alpha receptor to the Fc region of the immunoglobulin G1 antibody. It acts by blocking TNF-alpha signaling. The addition of etanercept to steroid therapies has shown promising short-term outcomes (extubation, improved short-term survival) in single-center studies.[44] A large phase II trial of this approach in pediatrics showed promising results, with overall survival rates of 89% at 1 month and 63% at 12 months.[45]

Epstein-Barr virus (EBV)–associated lymphoproliferative disorder

After HCT, EBV infection incidence increases through childhood, from approximately 40% in children aged 4 years to more than 80% in teenagers. Patients with a history of previous EBV infection are at risk of EBV reactivation when undergoing HCT procedures that result in intense, prolonged lymphopenia (T-cell–depleted procedures, use of antithymocyte globulin or alemtuzumab, and to a lesser degree, use of cord blood).[46-48]
Features of EBV reactivation can vary from an isolated increase in EBV titers in the bloodstream as measured by PCR, to an aggressive monoclonal disease with marked lymphadenopathy presenting as lymphoma (lymphoproliferative disorder).
Isolated bloodstream reactivation can improve in some cases without therapy as immune function improves; however, lymphoproliferative disorder requires more aggressive therapy. Treatment of EBV–associated lymphoproliferative disorder has relied on decreasing immune suppression and treatment with chemotherapy agents such as cyclophosphamide. CD20-positive EBV–associated lymphoproliferative disorder and EBV reactivation have been shown to respond to therapy with the CD20 monoclonal antibody therapy rituximab.[49-51] In addition, some centers have shown efficacy in treating or preventing this complication with therapeutic or prophylactic EBV-specific cytotoxic T cells.[52,53]
Improved understanding of the risk of EBV reactivation, early monitoring, and aggressive therapy have significantly decreased the risk of mortality from this challenging complication.

Acute graft-versus-host disease (GVHD)

GVHD is the result of immunologic activation of donor lymphocytes targeting major or minor HLA disparities present in the tissues of a recipient.[54] Acute GVHD usually occurs within the first 3 months posttransplantation, although delayed acute GVHD has been noted in reduced-intensity conditioning and nonmyeloablative approaches where achieving a high level of full donor chimerism is sometimes delayed.
Typically, acute GVHD presents with at least one of the following three manifestations:
  • Skin rash.
  • Hyperbilirubinemia.
  • Secretory diarrhea.
Acute GVHD is classified by staging the severity of skin, liver, and gastrointestinal involvement and further combining the individual staging of these three areas into an overall grade that is prognostically significant (refer to Tables 6 and 7).[55] Patients with grade III or grade IV acute GVHD are at higher risk of mortality, generally resulting from organ system damage caused by infections or progressive acute GVHD that is sometimes resistant to therapy.
Table 6. Staging of Acute Graft-Versus-Host Disease (GVHD)a
StageSkinLiver (bilirubin)bGI/Gut (stool output per day)c
AdultChild
BSA = body surface area; GI = gastrointestinal.
aAdapted from Harris et al.[56]
bThere is no modification of liver staging for other causes of hyperbilirubinemia.
cFor GI staging: The adult stool output values should be used for patients weighing >50 kg. Use 3-day averages for GI staging based on stool output. If stool and urine are mixed, stool output is presumed to be 50% of total stool/urine mix.
dIf results of colon or rectal biopsy are positive, but stool output is <500 mL/day (<10 mL/kg/day), then consider as GI stage 0.
eFor stage 4 GI: the term severe abdominal pain will be defined as having both (a) pain control requiring treatment with opioids or an increased dose in ongoing opioid use; and (b) pain that significantly impacts performance status, as determined by the treating physician.
0No GVHD rash<2 mg/dL<500 mL or <3 episodes/day<10 mL/kg or <4 episodes/day
1Maculopapular rash <25% BSA2–3 mg/dL500–999 mLd or 3–4 episodes/day10–19.9 mL/kg or 4–6 episodes/day; persistent nausea, vomiting, or anorexia, with a positive result from upper GI biopsy
2Maculopapular rash 25%–50% BSA3.1–6 mg/dL1,000–1,500 mL or 5–7 episodes/day20–30 mL/kg or 7–10 episodes/day
3Maculopapular rash >50% BSA6.1–15 mg/dL>1,500 mL or >7 episodes/day>30 mL/kg or >10 episodes/day
4Generalized erythroderma plus bullous formation and desquamation >5% BSA>15 mg/dLSevere abdominal painewith or without ileus, or grossly bloody stool (regardless of stool volume)Severe abdominal paine with or without ileus, or grossly bloody stool (regardless of stool volume)
Table 7. Overall Clinical Grade (Based on the Highest Stage Obtained)
GI = gastrointestinal.
Grade 0:No stage 1–4 of any organ
Grade I:Stage 1–2 skin and no liver or gut involvement
Grade II:Stage 3 skin and/or stage 1 liver involvement and/or stage 1 GI
Grade III:Stage 0–3 skin, with stage 2–3 liver and/or stage 2–3 GI
Grade IV:Stage 4 skin, liver, or GI involvement
Prevention and treatment of acute GVHD
Morbidity and mortality from acute GVHD can be reduced through immune suppressive medications given prophylactically or T-cell depletion of grafts, either ex vivo by actual removal of cells from a graft or in vivo with antilymphocyte antibodies (antithymocyte globulin or anti-CD52 [alemtuzumab]).
Approaches to GVHD prevention in non–T-cell-depleted grafts have included the following:[57,58]; [59][Level of evidence: 3iiiA]
  • Intermittent methotrexate.
  • Calcineurin inhibitor (e.g., cyclosporine or tacrolimus).
  • Combination of a calcineurin inhibitor with methotrexate (currently the most commonly used approach in pediatrics).
  • Various combinations of a calcineurin inhibitor with steroids or mycophenolate mofetil.
  • Non–calcineurin inhibitor (intensive T-cell depletion, posttransplant cyclophosphamide, etc.). Non–calcineurin inhibitor approaches have been developed and are becoming more widely used.
When significant acute GVHD occurs, first-line therapy is generally methylprednisolone.[60] Patients with acute GVHD resistant to this therapy have a poor prognosis, but a good percentage of cases respond to second-line agents (e.g., mycophenolate mofetil, infliximab, pentostatin, sirolimus, or extracorporeal photopheresis).[61]
Complete elimination of acute GVHD with intense T-cell depletion has generally resulted in increased relapse, more infectious morbidity, and increased EBV-associated lymphoproliferative disorder. Because of this, most HCT GVHD prophylaxis is given in an attempt to balance risk by giving sufficient immune suppression to prevent severe acute GVHD but not completely remove GVHD risk.

Chronic GVHD

Chronic GVHD is a syndrome that may involve a single organ system or several organ systems, with clinical features resembling an autoimmune disease.[62,63] Chronic GVHD is usually first noted 2 to 12 months after HCT. Traditionally, symptoms occurring more than 100 days after HCT were considered to be chronic GVHD, and symptoms occurring sooner than 100 days post-HCT were considered to be acute GVHD. Because some approaches to HCT can lead to late-onset acute GVHD, and manifestations that are diagnostic for chronic GVHD can occur sooner than 100 days post-HCT, the following three distinct types of chronic GVHD have been described:
  • Classic chronic GVHD: Occurs with diagnostic and/or distinct features of chronic GVHD (refer to Tables 8–12) after a previous history of resolved acute GVHD.
  • Overlap syndrome: An ongoing GVHD process when manifestations diagnostic for chronic GVHD occur while symptoms of acute GVHD persist.
  • De novo chronic GVHD: New-onset GVHD generally occurring at least 2 months after transplant, with diagnostic and/or distinct features of chronic GVHD and no history or features of acute GVHD.
Chronic GVHD occurs in approximately 15% to 30% of children after sibling donor HCT [64] and in 20% to 45% of children after unrelated-donor HCT, with a higher risk associated with peripheral blood stem cells (PBSCs) and a lower risk associated with cord blood.[65,66] The tissues that are commonly involved include skin, eyes, mouth, hair, joints, liver, and gastrointestinal tract. Other tissues such as lungs, nails, muscles, urogenital system, and nervous system may be involved.
Risk factors for the development of chronic GVHD include the following:[64,67,68]
  • Patient’s age.
  • Type of donor.
  • Use of PBSCs.
  • History of acute GVHD.
  • Conditioning regimen.
The diagnosis of chronic GVHD is based on clinical features (at least one diagnostic clinical sign, e.g., poikiloderma) or distinctive manifestations complemented by relevant tests (e.g., dry eye with positive results of a Schirmer test).[69] Tables 8 to 12 list organ manifestations of chronic GVHD with a description of findings that are sufficient to establish the diagnosis of chronic GVHD. Biopsies of affected sites may be needed to confirm the diagnosis.[70]
Table 8. Chronic Graft-versus-Host Disease (GVHD) Symptoms in the Skin, Nails, Scalp, and Body Haira
ENLARGE
Organ or SiteDiagnosticbDistinctivecOther FeaturesdCommon (Seen with Both Acute and Chronic GVHD)
aReprinted from Biology of Blood and Marrow TransplantationExit Disclaimer, Volume 11 (Issue 12), Alexandra H. Filipovich, Daniel Weisdorf, Steven Pavletic, Gerard Socie, John R. Wingard, Stephanie J. Lee, Paul Martin, Jason Chien, Donna Przepiorka, Daniel Couriel, Edward W. Cowen, Patricia Dinndorf, Ann Farrell, Robert Hartzman, Jean Henslee-Downey, David Jacobsohn, George McDonald, Barbara Mittleman, J. Douglas Rizzo, Michael Robinson, Mark Schubert, Kirk Schultz, Howard Shulman, Maria Turner, Georgia Vogelsang, Mary E.D. Flowers, National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. Diagnosis and Staging Working Group Report, Pages 945-956, Copyright 2005, with permission from American Society for Blood and Marrow Transplantation and Elsevier.[69]
bSufficient to establish the diagnosis of chronic GVHD.
cSeen in chronic GVHD, but insufficient alone to establish a diagnosis of chronic GVHD.
dCan be acknowledged as part of the chronic GVHD symptomatology if the diagnosis is confirmed.
eIn all cases, infection, drug effects, malignancy, or other causes must be excluded.
fDiagnosis of chronic GVHD requires biopsy or radiology confirmation (or Schirmer test for eyes).
SkinPoikilodermaDepigmentationSweat impairmentPruritus
Lichen planus–like featuresIchthyosisErythema
Sclerotic featuresKeratosis pilarisMaculopapular rash
Morphea-like featuresHypopigmentation
Lichen sclerosus–like featuresHyperpigmentation
NailsDystrophy
Longitudinal ridging, splitting, or brittle features
Onycholysis
Pterygium unguis
Nail loss (usually symmetric; affects most nails)e
Scalp and body hairNew onset of scarring or nonscarring scalp alopecia (after recovery from chemoradiotherapy)Thinning scalp hair, typically patchy, coarse, or dull (not explained by endocrine or other causes)
Scaling, papulosquamous lesionsPremature gray hair
Table 9. Chronic Graft-versus-Host Disease (GVHD) Symptoms in the Mouth and GI Tracta
Organ or SiteDiagnosticbDistinctivecOther FeaturesdCommon (Seen with Both Acute and Chronic GVHD)
ALT = alanine aminotransferase; AST = aspartate aminotransferase; GI = gastrointestinal; ULN = upper limit of normal.
Refer to Table 8 footers for definitions of a through e.
MouthLichen-type featuresXerostomiaGingivitis
Hyperkeratotic plaquesMucoceleMucositis
Restriction of mouth opening from sclerosisPseudomembraneseErythema
Mucosal atrophyPain
Ulcerse
GI TractEsophageal webExocrine pancreatic insufficiencyAnorexia
Strictures or stenosis in the upper to mid third of the esophaguseNausea
Vomiting
Diarrhea
Weight loss
Failure to thrive (infants and children)
Total bilirubin, alkaline phosphatase >2 × ULNe
ALT or AST >2 × ULNe
Table 10. Chronic Graft-versus-Host Disease (GVHD) Symptoms in the Eyesa
Organ or SiteDiagnosticbDistinctivecOther FeaturesdCommon (Seen with Both Acute and Chronic GVHD)
Refer to Table 8 footers for definitions of a through f.
EyesNew onset dry, gritty, or painful eyesfBlepharitis (erythema of the eyelids with edema)
Cicatricial conjunctivitis
Keratoconjunctivitis siccafPhotophobia
Confluent areas of punctate keratopathyPeriorbital hyperpigmentation
Table 11. Chronic Graft-versus-Host Disease (GVHD) Symptoms in the Genitaliaa
Organ or SiteDiagnosticbDistinctivecOther FeaturesdCommon (Seen with Both Acute and Chronic GVHD)
Refer to Table 8 footers for definitions of a through e.
GenitaliaLichen planus–like featuresErosionse
Fissurese
Vaginal scarring or stenosisUlcerse
Table 12. Chronic Graft-versus-Host Disease (GVHD) Symptoms in the Lung, Muscles, Fascia, Joints, Hematopoietic and Immune Systems, and Other Symptomsa
ENLARGE
Organ or SiteDiagnosticbDistinctivecOther FeaturesdCommon (Seen with Both Acute and Chronic GVHD)
AIHA = autoimmune hemolytic anemia; BOOP = bronchiolitis obliterans–organizing pneumonia; ITP = idiopathic thrombocytopenic purpura; PFTs = pulmonary function tests.
Refer to Table 8 footers for definitions of a through f.
LungBronchiolitis obliterans diagnosed with lung biopsyBronchiolitis obliterans diagnosed with PFTs and radiologyfBOOP
Muscles, fascia, jointsFasciitisMyositis or polymyositisfEdema
Muscle cramps
Arthralgia or arthritis
Hematopoietic and immuneThrombocytopenia
Eosinophilia
Lymphopenia
Hypo- or hypergammaglobulinemia
Autoantibodies (AIHA and ITP)
OtherPericardial or pleural effusions
Ascites
Peripheral neuropathy
Nephrotic syndrome
Myasthenia gravis
Cardiac conduction abnormality or cardiomyopathy
Common skin manifestations include alterations in pigmentation, texture, elasticity, and thickness, with papules, plaques, or follicular changes. Patient-reported symptoms include dry skin, itching, limited mobility, rash, sores, or changes in coloring or texture. Generalized scleroderma may lead to severe joint contractures and debility. Associated hair loss and nail changes are common. Other important symptoms that should be assessed include dry eyes and oral changes such as atrophy, ulcers, and lichen planus. In addition, joint stiffness along with restricted range of motion, weight loss, nausea, difficulty swallowing, and diarrhea should be noted.
Several factors have been associated with increased risk of nonrelapse mortality in children who develop significant chronic GVHD. Children who received HLA-mismatched grafts, received PBSCs, were older than 10 years, or had platelet counts lower than 100,000/µL at diagnosis of chronic GVHD have an increased risk of nonrelapse mortality. Nonrelapse mortality was 17% at 1 year, 22% at 3 years, and 24% at 5 years after diagnosis with chronic GVHD. Many of these children required long-term immune suppression. By 3 years after diagnosis of chronic GVHD, about a third of children had died of either relapse or nonrelapse mortality, a third were off immune suppression, and a third still required some form of immune suppressive therapy.[71]
Older literature describes chronic GVHD as either limited or extensive. A National Institutes of Health (NIH) Consensus Workshop in 2006 proposed broadening the description of chronic GVHD to three categories to better predict long-term outcomes.[72] The three NIH grading categories are as follows:[69]
  • Mild disease: Involving only one or two sites, with no significant functional impairment (maximum severity score of 1 on a scale of 0 to 3).
  • Moderate disease: Either involving more sites (>2) or associated with higher severity score (maximum score of 2 in any site).
  • Severe disease: Indicating major disability (a score of 3 in any site or a lung score of 2).
Thus, high-risk patients include those with severe disease of any site or extensive involvement of multiple sites, especially those with the following:
  • Symptomatic lung involvement.
  • Skin involvement greater than 50%.
  • Platelet count lower than 100,000/µL.
  • Poor performance score (<60%).
  • Weight loss of more than 15%.
  • Chronic diarrhea.
  • Progressive-onset chronic GVHD.
  • History of steroid treatment with more than 0.5 mg of prednisone per kilogram per day for acute GVHD.
One study demonstrated a much higher chance of long-term GVHD-free survival and lower treatment-related mortality in children with mild and moderate chronic GVHD than in children with severe chronic GVHD. At 8 years, the probability of continued chronic GVHD in children with mild, moderate, and severe chronic GVHD was 4%, 11%, and 36%, respectively.[73] In another large prospective trial with central review that used the National Institutes of Health (NIH) consensus criteria, about 28% of patients were misclassified as having chronic GVHD when they actually had late-acute GVHD. Additionally, there were significant challenges when using the NIH consensus criteria for bronchiolitis obliterans in children.[74]

Treatment of chronic GVHD

Steroids remain the cornerstone of chronic GVHD therapy; however, many approaches have been developed to minimize steroid dosing, including the use of calcineurin inhibitors.[75] Topical therapy to affected areas is preferred for patients with limited disease.[76] The following agents have been tested with some success:
  • Mycophenolate mofetil.[77]
  • Pentostatin.[78]
  • Sirolimus.[79]
  • Rituximab.[80]
  • Ibrutinib.[81]
Other approaches, including extracorporeal photopheresis, have been evaluated and show some efficacy in a percentage of patients.[82]
Besides significantly affecting organ function, quality of life, and functional status, infection is the major cause of chronic GVHD–related death. Therefore, all patients with chronic GVHD receive prophylaxis against Pneumocystis jirovecii pneumonia, common encapsulated organisms, and varicella by using agents such as trimethoprim/sulfamethoxazole, penicillin, and acyclovir. While disease progression is the primary cause of death seen in long-term follow-up of hematopoietic stem cell transplantation patients with no chronic GVHD, transplant-related complications account for 70% of the deaths in patients with chronic GVHD.[64] Guidelines concerning ancillary therapy and supportive care of patients with chronic GVHD have been published.[76]

Late Mortality After HCT

The highest incidence of mortality after HCT occurs in the first 2 years, mostly caused by relapse. A study of late mortality (≥2 years) after HCT showed that about 20% of the 479 patients who were alive at 2 years suffered a late death. Late mortality in the allogeneic group was 15% (median follow-up, 10.0 years; range, 2.0–25.6 years), mainly caused by relapse (65%). A total of 26% of patients suffered a late death after autologous HCT (median follow-up, 6.7 years; range, 2.0–22.2 years),[83] and recurrence of the primary malignancy accounted for 88% of these deaths. In contrast to studies of adult patients, nonrelapse mortality is less common in children, and death caused by chronic GVHD and secondary malignancies is less common. Another study reviewed the causes of late mortality after second allogeneic transplantation.[84] Of the children who were alive and relapse free 1 year after second HCT, 55% remained alive at 10 years. The most common cause of mortality at 10 years in this group was relapse (77% of deaths), generally occurring in the first 3 years after transplantation. The cumulative incidence of nonrelapse mortality for this cohort at 10 years was 10%. Chronic GVHD occurred in 43% of children in this study and was the leading cause of nonrelapse mortality.
A study focused on late mortality after autologous HCT in children showed that mortality rates remained elevated from those of the general population more than 10 years after the procedure, but approached the rates of the general population at 15 years. The study also showed a decrease in late mortality in the more current treatment eras (before 1990: 35.1%; 1990–1999: 25.6%; 2000–2010: 21.8%; P = .05).[85]


References
  1. Sorror ML, Maris MB, Storb R, et al.: Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106 (8): 2912-9, 2005. [PUBMED Abstract]
  2. ElSawy M, Storer BE, Pulsipher MA, et al.: Multi-centre validation of the prognostic value of the haematopoietic cell transplantation- specific comorbidity index among recipient of allogeneic haematopoietic cell transplantation. Br J Haematol 170 (4): 574-83, 2015. [PUBMED Abstract]
  3. Sorror ML, Storer BE, Maloney DG, et al.: Outcomes after allogeneic hematopoietic cell transplantation with nonmyeloablative or myeloablative conditioning regimens for treatment of lymphoma and chronic lymphocytic leukemia. Blood 111 (1): 446-52, 2008. [PUBMED Abstract]
  4. Sorror ML, Sandmaier BM, Storer BE, et al.: Comorbidity and disease status based risk stratification of outcomes among patients with acute myeloid leukemia or myelodysplasia receiving allogeneic hematopoietic cell transplantation. J Clin Oncol 25 (27): 4246-54, 2007. [PUBMED Abstract]
  5. Sorror M, Storer B, Sandmaier BM, et al.: Hematopoietic cell transplantation-comorbidity index and Karnofsky performance status are independent predictors of morbidity and mortality after allogeneic nonmyeloablative hematopoietic cell transplantation. Cancer 112 (9): 1992-2001, 2008. [PUBMED Abstract]
  6. Sorror ML, Martin PJ, Storb RF, et al.: Pretransplant comorbidities predict severity of acute graft-versus-host disease and subsequent mortality. Blood 124 (2): 287-95, 2014. [PUBMED Abstract]
  7. Smith AR, Majhail NS, MacMillan ML, et al.: Hematopoietic cell transplantation comorbidity index predicts transplantation outcomes in pediatric patients. Blood 117 (9): 2728-34, 2011. [PUBMED Abstract]
  8. Wood W, Deal A, Whitley J, et al.: Usefulness of the hematopoietic cell transplantation-specific comorbidity index (HCT-CI) in predicting outcomes for adolescents and young adults with hematologic malignancies undergoing allogeneic stem cell transplant. Pediatr Blood Cancer 57 (3): 499-505, 2011. [PUBMED Abstract]
  9. Sorror ML, Logan BR, Zhu X, et al.: Prospective Validation of the Predictive Power of the Hematopoietic Cell Transplantation Comorbidity Index: A Center for International Blood and Marrow Transplant Research Study. Biol Blood Marrow Transplant 21 (8): 1479-87, 2015. [PUBMED Abstract]
  10. Antin JH: Immune reconstitution: the major barrier to successful stem cell transplantation. Biol Blood Marrow Transplant 11 (2 Suppl 2): 43-5, 2005. [PUBMED Abstract]
  11. Fry TJ, Mackall CL: Immune reconstitution following hematopoietic progenitor cell transplantation: challenges for the future. Bone Marrow Transplant 35 (Suppl 1): S53-7, 2005. [PUBMED Abstract]
  12. Wingard JR, Majhail NS, Brazauskas R, et al.: Long-term survival and late deaths after allogeneic hematopoietic cell transplantation. J Clin Oncol 29 (16): 2230-9, 2011. [PUBMED Abstract]
  13. Bunin N, Small T, Szabolcs P, et al.: NCI, NHLBI/PBMTC first international conference on late effects after pediatric hematopoietic cell transplantation: persistent immune deficiency in pediatric transplant survivors. Biol Blood Marrow Transplant 18 (1): 6-15, 2012. [PUBMED Abstract]
  14. Burik JH, Freifeld AG: Infection in the severely immunocompromised patient. In: Abeloff MD, Armitage JO, Niederhuber JE, et al.: Clinical Oncology. 3rd ed. Philadelphia, Pa: Elsevier, Churchill Livingstone, 2004, pp 941-56.
  15. Tomblyn M, Chiller T, Einsele H, et al.: Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant 15 (10): 1143-238, 2009. [PUBMED Abstract]
  16. Levy ER, Musick L, Zinter MS, et al.: Safe and Effective Prophylaxis with Bimonthly Intravenous Pentamidine in the Pediatric Hematopoietic Stem Cell Transplant Population. Pediatr Infect Dis J 35 (2): 135-41, 2016. [PUBMED Abstract]
  17. Hiwarkar P, Amrolia P, Sivaprakasam P, et al.: Brincidofovir is highly efficacious in controlling adenoviremia in pediatric recipients of hematopoietic cell transplant. Blood 129 (14): 2033-2037, 2017. [PUBMED Abstract]
  18. Centers for Disease Control and Prevention, Infectious Disease Society of America, American Society of Blood and Marrow Transplantation: Guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. MMWR Recomm Rep 49 (RR-10): 1-125, CE1-7, 2000. [PUBMED Abstract]
  19. Kumar D, Chen MH, Welsh B, et al.: A randomized, double-blind trial of pneumococcal vaccination in adult allogeneic stem cell transplant donors and recipients. Clin Infect Dis 45 (12): 1576-82, 2007. [PUBMED Abstract]
  20. Reiss U, Cowan M, McMillan A, et al.: Hepatic venoocclusive disease in blood and bone marrow transplantation in children and young adults: incidence, risk factors, and outcome in a cohort of 241 patients. J Pediatr Hematol Oncol 24 (9): 746-50, 2002. [PUBMED Abstract]
  21. Cesaro S, Pillon M, Talenti E, et al.: A prospective survey on incidence, risk factors and therapy of hepatic veno-occlusive disease in children after hematopoietic stem cell transplantation. Haematologica 90 (10): 1396-404, 2005. [PUBMED Abstract]
  22. Bearman SI: The syndrome of hepatic veno-occlusive disease after marrow transplantation. Blood 85 (11): 3005-20, 1995. [PUBMED Abstract]
  23. Myers KC, Dandoy C, El-Bietar J, et al.: Veno-occlusive disease of the liver in the absence of elevation in bilirubin in pediatric patients after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 21 (2): 379-81, 2015. [PUBMED Abstract]
  24. Ruutu T, Eriksson B, Remes K, et al.: Ursodeoxycholic acid for the prevention of hepatic complications in allogeneic stem cell transplantation. Blood 100 (6): 1977-83, 2002. [PUBMED Abstract]
  25. Myers KC, Lawrence J, Marsh RA, et al.: High-dose methylprednisolone for veno-occlusive disease of the liver in pediatric hematopoietic stem cell transplantation recipients. Biol Blood Marrow Transplant 19 (3): 500-3, 2013. [PUBMED Abstract]
  26. Richardson PG, Murakami C, Jin Z, et al.: Multi-institutional use of defibrotide in 88 patients after stem cell transplantation with severe veno-occlusive disease and multisystem organ failure: response without significant toxicity in a high-risk population and factors predictive of outcome. Blood 100 (13): 4337-43, 2002. [PUBMED Abstract]
  27. Corbacioglu S, Kernan N, Lehmann L, et al.: Defibrotide for the treatment of hepatic veno-occlusive disease in children after hematopoietic stem cell transplantation. Expert Rev Hematol 5 (3): 291-302, 2012. [PUBMED Abstract]
  28. Richardson PG, Soiffer RJ, Antin JH, et al.: Defibrotide for the treatment of severe hepatic veno-occlusive disease and multiorgan failure after stem cell transplantation: a multicenter, randomized, dose-finding trial. Biol Blood Marrow Transplant 16 (7): 1005-17, 2010. [PUBMED Abstract]
  29. Dignan FL, Wynn RF, Hadzic N, et al.: BCSH/BSBMT guideline: diagnosis and management of veno-occlusive disease (sinusoidal obstruction syndrome) following haematopoietic stem cell transplantation. Br J Haematol 163 (4): 444-57, 2013. [PUBMED Abstract]
  30. Strouse C, Richardson P, Prentice G, et al.: Defibrotide for Treatment of Severe Veno-Occlusive Disease in Pediatrics and Adults: An Exploratory Analysis Using Data from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant 22 (7): 1306-1312, 2016. [PUBMED Abstract]
  31. Richardson PG, Smith AR, Triplett BM, et al.: Earlier defibrotide initiation post-diagnosis of veno-occlusive disease/sinusoidal obstruction syndrome improves Day +100 survival following haematopoietic stem cell transplantation. Br J Haematol 178 (1): 112-118, 2017. [PUBMED Abstract]
  32. Corbacioglu S, Cesaro S, Faraci M, et al.: Defibrotide for prophylaxis of hepatic veno-occlusive disease in paediatric haemopoietic stem-cell transplantation: an open-label, phase 3, randomised controlled trial. Lancet 379 (9823): 1301-9, 2012. [PUBMED Abstract]
  33. Ruutu T, Juvonen E, Remberger M, et al.: Improved survival with ursodeoxycholic acid prophylaxis in allogeneic stem cell transplantation: long-term follow-up of a randomized study. Biol Blood Marrow Transplant 20 (1): 135-8, 2014. [PUBMED Abstract]
  34. Bajwa RPS, Mahadeo KM, Taragin BH, et al.: Consensus Report by Pediatric Acute Lung Injury and Sepsis Investigators and Pediatric Blood and Marrow Transplantation Consortium Joint Working Committees: Supportive Care Guidelines for Management of Veno-Occlusive Disease in Children and Adolescents, Part 1: Focus on Investigations, Prophylaxis, and Specific Treatment. Biol Blood Marrow Transplant 23 (11): 1817-1825, 2017. [PUBMED Abstract]
  35. Mahadeo KM, McArthur J, Adams RH, et al.: Consensus Report by the Pediatric Acute Lung Injury and Sepsis Investigators and Pediatric Blood and Marrow Transplant Consortium Joint Working Committees on Supportive Care Guidelines for Management of Veno-Occlusive Disease in Children and Adolescents: Part 2-Focus on Ascites, Fluid and Electrolytes, Renal, and Transfusion Issues. Biol Blood Marrow Transplant 23 (12): 2023-2033, 2017. [PUBMED Abstract]
  36. Ovchinsky N, Frazier W, Auletta JJ, et al.: Consensus Report by the Pediatric Acute Lung Injury and Sepsis Investigators and Pediatric Blood and Marrow Transplantation Consortium Joint Working Committees on Supportive Care Guidelines for Management of Veno-Occlusive Disease in Children and Adolescents, Part 3: Focus on Cardiorespiratory Dysfunction, Infections, Liver Dysfunction, and Delirium. Biol Blood Marrow Transplant 24 (2): 207-218, 2018. [PUBMED Abstract]
  37. Jodele S, Licht C, Goebel J, et al.: Abnormalities in the alternative pathway of complement in children with hematopoietic stem cell transplant-associated thrombotic microangiopathy. Blood 122 (12): 2003-7, 2013. [PUBMED Abstract]
  38. Cutler C, Henry NL, Magee C, et al.: Sirolimus and thrombotic microangiopathy after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11 (7): 551-7, 2005. [PUBMED Abstract]
  39. Ho VT, Cutler C, Carter S, et al.: Blood and marrow transplant clinical trials network toxicity committee consensus summary: thrombotic microangiopathy after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 11 (8): 571-5, 2005. [PUBMED Abstract]
  40. Jodele S, Fukuda T, Vinks A, et al.: Eculizumab therapy in children with severe hematopoietic stem cell transplantation-associated thrombotic microangiopathy. Biol Blood Marrow Transplant 20 (4): 518-25, 2014. [PUBMED Abstract]
  41. Jodele S, Fukuda T, Mizuno K, et al.: Variable Eculizumab Clearance Requires Pharmacodynamic Monitoring to Optimize Therapy for Thrombotic Microangiopathy after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 22 (2): 307-315, 2016. [PUBMED Abstract]
  42. Kantrow SP, Hackman RC, Boeckh M, et al.: Idiopathic pneumonia syndrome: changing spectrum of lung injury after marrow transplantation. Transplantation 63 (8): 1079-86, 1997. [PUBMED Abstract]
  43. Clark JG, Hansen JA, Hertz MI, et al.: NHLBI workshop summary. Idiopathic pneumonia syndrome after bone marrow transplantation. Am Rev Respir Dis 147 (6 Pt 1): 1601-6, 1993. [PUBMED Abstract]
  44. Yanik GA, Ho VT, Levine JE, et al.: The impact of soluble tumor necrosis factor receptor etanercept on the treatment of idiopathic pneumonia syndrome after allogeneic hematopoietic stem cell transplantation. Blood 112 (8): 3073-81, 2008. [PUBMED Abstract]
  45. Yanik GA, Grupp SA, Pulsipher MA, et al.: TNF-receptor inhibitor therapy for the treatment of children with idiopathic pneumonia syndrome. A joint Pediatric Blood and Marrow Transplant Consortium and Children's Oncology Group Study (ASCT0521). Biol Blood Marrow Transplant 21 (1): 67-73, 2015. [PUBMED Abstract]
  46. Gerritsen EJ, Stam ED, Hermans J, et al.: Risk factors for developing EBV-related B cell lymphoproliferative disorders (BLPD) after non-HLA-identical BMT in children. Bone Marrow Transplant 18 (2): 377-82, 1996. [PUBMED Abstract]
  47. Shapiro RS, McClain K, Frizzera G, et al.: Epstein-Barr virus associated B cell lymphoproliferative disorders following bone marrow transplantation. Blood 71 (5): 1234-43, 1988. [PUBMED Abstract]
  48. Brunstein CG, Weisdorf DJ, DeFor T, et al.: Marked increased risk of Epstein-Barr virus-related complications with the addition of antithymocyte globulin to a nonmyeloablative conditioning prior to unrelated umbilical cord blood transplantation. Blood 108 (8): 2874-80, 2006. [PUBMED Abstract]
  49. Blaes AH, Cao Q, Wagner JE, et al.: Monitoring and preemptive rituximab therapy for Epstein-Barr virus reactivation after antithymocyte globulin containing nonmyeloablative conditioning for umbilical cord blood transplantation. Biol Blood Marrow Transplant 16 (2): 287-91, 2010. [PUBMED Abstract]
  50. Kuehnle I, Huls MH, Liu Z, et al.: CD20 monoclonal antibody (rituximab) for therapy of Epstein-Barr virus lymphoma after hemopoietic stem-cell transplantation. Blood 95 (4): 1502-5, 2000. [PUBMED Abstract]
  51. Styczynski J, Gil L, Tridello G, et al.: Response to rituximab-based therapy and risk factor analysis in Epstein Barr Virus-related lymphoproliferative disorder after hematopoietic stem cell transplant in children and adults: a study from the Infectious Diseases Working Party of the European Group for Blood and Marrow Transplantation. Clin Infect Dis 57 (6): 794-802, 2013. [PUBMED Abstract]
  52. Liu Z, Savoldo B, Huls H, et al.: Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the prevention and treatment of EBV-associated post-transplant lymphomas. Recent Results Cancer Res 159: 123-33, 2002. [PUBMED Abstract]
  53. Bollard CM, Heslop HE: T cells for viral infections after allogeneic hematopoietic stem cell transplant. Blood 127 (26): 3331-40, 2016. [PUBMED Abstract]
  54. Ferrara JL, Levine JE, Reddy P, et al.: Graft-versus-host disease. Lancet 373 (9674): 1550-61, 2009. [PUBMED Abstract]
  55. Przepiorka D, Weisdorf D, Martin P, et al.: 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 15 (6): 825-8, 1995. [PUBMED Abstract]
  56. Harris AC, Young R, Devine S, et al.: International, Multicenter Standardization of Acute Graft-versus-Host Disease Clinical Data Collection: A Report from the Mount Sinai Acute GVHD International Consortium. Biol Blood Marrow Transplant 22 (1): 4-10, 2016. [PUBMED Abstract]
  57. Kanakry CG, O'Donnell PV, Furlong T, et al.: Multi-institutional study of post-transplantation cyclophosphamide as single-agent graft-versus-host disease prophylaxis after allogeneic bone marrow transplantation using myeloablative busulfan and fludarabine conditioning. J Clin Oncol 32 (31): 3497-505, 2014. [PUBMED Abstract]
  58. Bertaina A, Merli P, Rutella S, et al.: HLA-haploidentical stem cell transplantation after removal of αβ+ T and B cells in children with nonmalignant disorders. Blood 124 (5): 822-6, 2014. [PUBMED Abstract]
  59. Jacoby E, Chen A, Loeb DM, et al.: Single-Agent Post-Transplantation Cyclophosphamide as Graft-versus-Host Disease Prophylaxis after Human Leukocyte Antigen-Matched Related Bone Marrow Transplantation for Pediatric and Young Adult Patients with Hematologic Malignancies. Biol Blood Marrow Transplant 22 (1): 112-8, 2016. [PUBMED Abstract]
  60. Jacobsohn DA: Acute graft-versus-host disease in children. Bone Marrow Transplant 41 (2): 215-21, 2008. [PUBMED Abstract]
  61. Deeg HJ: How I treat refractory acute GVHD. Blood 109 (10): 4119-26, 2007. [PUBMED Abstract]
  62. Shlomchik WD, Lee SJ, Couriel D, et al.: Transplantation's greatest challenges: advances in chronic graft-versus-host disease. Biol Blood Marrow Transplant 13 (1 Suppl 1): 2-10, 2007. [PUBMED Abstract]
  63. Bolaños-Meade J, Vogelsang GB: Chronic graft-versus-host disease. Curr Pharm Des 14 (20): 1974-86, 2008. [PUBMED Abstract]
  64. Zecca M, Prete A, Rondelli R, et al.: Chronic graft-versus-host disease in children: incidence, risk factors, and impact on outcome. Blood 100 (4): 1192-200, 2002. [PUBMED Abstract]
  65. Eapen M, Logan BR, Confer DL, et al.: Peripheral blood grafts from unrelated donors are associated with increased acute and chronic graft-versus-host disease without improved survival. Biol Blood Marrow Transplant 13 (12): 1461-8, 2007. [PUBMED Abstract]
  66. Eapen M, Rubinstein P, Zhang MJ, et al.: Outcomes of transplantation of unrelated donor umbilical cord blood and bone marrow in children with acute leukaemia: a comparison study. Lancet 369 (9577): 1947-54, 2007. [PUBMED Abstract]
  67. Leung W, Ahn H, Rose SR, et al.: A prospective cohort study of late sequelae of pediatric allogeneic hematopoietic stem cell transplantation. Medicine (Baltimore) 86 (4): 215-24, 2007. [PUBMED Abstract]
  68. Arora M, Klein JP, Weisdorf DJ, et al.: Chronic GVHD risk score: a Center for International Blood and Marrow Transplant Research analysis. Blood 117 (24): 6714-20, 2011. [PUBMED Abstract]
  69. Filipovich AH, Weisdorf D, Pavletic S, et al.: National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant 11 (12): 945-56, 2005. [PUBMED Abstract]
  70. Shulman HM, Kleiner D, Lee SJ, et al.: Histopathologic diagnosis of chronic graft-versus-host disease: National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: II. Pathology Working Group Report. Biol Blood Marrow Transplant 12 (1): 31-47, 2006. [PUBMED Abstract]
  71. Jacobsohn DA, Arora M, Klein JP, et al.: Risk factors associated with increased nonrelapse mortality and with poor overall survival in children with chronic graft-versus-host disease. Blood 118 (16): 4472-9, 2011. [PUBMED Abstract]
  72. Pavletic SZ, Martin P, Lee SJ, et al.: Measuring therapeutic response in chronic graft-versus-host disease: National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: IV. Response Criteria Working Group report. Biol Blood Marrow Transplant 12 (3): 252-66, 2006. [PUBMED Abstract]
  73. Inagaki J, Moritake H, Nishikawa T, et al.: Long-Term Morbidity and Mortality in Children with Chronic Graft-versus-Host Disease Classified by National Institutes of Health Consensus Criteria after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 21 (11): 1973-80, 2015. [PUBMED Abstract]
  74. Cuvelier GDE, Nemecek ER, Wahlstrom JT, et al.: Benefits and challenges with diagnosing chronic and late acute GVHD in children using the NIH consensus criteria. Blood 134 (3): 304-316, 2019. [PUBMED Abstract]
  75. Koc S, Leisenring W, Flowers ME, et al.: Therapy for chronic graft-versus-host disease: a randomized trial comparing cyclosporine plus prednisone versus prednisone alone. Blood 100 (1): 48-51, 2002. [PUBMED Abstract]
  76. Couriel D, Carpenter PA, Cutler C, et al.: Ancillary therapy and supportive care of chronic graft-versus-host disease: national institutes of health consensus development project on criteria for clinical trials in chronic Graft-versus-host disease: V. Ancillary Therapy and Supportive Care Working Group Report. Biol Blood Marrow Transplant 12 (4): 375-96, 2006. [PUBMED Abstract]
  77. Martin PJ, Storer BE, Rowley SD, et al.: Evaluation of mycophenolate mofetil for initial treatment of chronic graft-versus-host disease. Blood 113 (21): 5074-82, 2009. [PUBMED Abstract]
  78. Jacobsohn DA, Gilman AL, Rademaker A, et al.: Evaluation of pentostatin in corticosteroid-refractory chronic graft-versus-host disease in children: a Pediatric Blood and Marrow Transplant Consortium study. Blood 114 (20): 4354-60, 2009. [PUBMED Abstract]
  79. Jurado M, Vallejo C, Pérez-Simón JA, et al.: Sirolimus as part of immunosuppressive therapy for refractory chronic graft-versus-host disease. Biol Blood Marrow Transplant 13 (6): 701-6, 2007. [PUBMED Abstract]
  80. Cutler C, Miklos D, Kim HT, et al.: Rituximab for steroid-refractory chronic graft-versus-host disease. Blood 108 (2): 756-62, 2006. [PUBMED Abstract]
  81. Miklos D, Cutler CS, Arora M, et al.: Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood 130 (21): 2243-2250, 2017. [PUBMED Abstract]
  82. González Vicent M, Ramirez M, Sevilla J, et al.: Analysis of clinical outcome and survival in pediatric patients undergoing extracorporeal photopheresis for the treatment of steroid-refractory GVHD. J Pediatr Hematol Oncol 32 (8): 589-93, 2010. [PUBMED Abstract]
  83. Schechter T, Pole JD, Darmawikarta D, et al.: Late mortality after hematopoietic SCT for a childhood malignancy. Bone Marrow Transplant 48 (10): 1291-5, 2013. [PUBMED Abstract]
  84. Duncan CN, Majhail NS, Brazauskas R, et al.: Long-term survival and late effects among one-year survivors of second allogeneic hematopoietic cell transplantation for relapsed acute leukemia and myelodysplastic syndromes. Biol Blood Marrow Transplant 21 (1): 151-8, 2015. [PUBMED Abstract]
  85. Holmqvist AS, Chen Y, Wu J, et al.: Late mortality after autologous blood or marrow transplantation in childhood: a Blood or Marrow Transplant Survivor Study-2 report. Blood 131 (24): 2720-2729, 2018. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario