Estimates of Outbreak Risk from New Introductions of Ebola with Immediate and Delayed Transmission Control - Volume 21, Number 8—August 2015 - Emerging Infectious Disease journal - CDC
Volume 21, Number 8—August 2015
Research
Estimates of Outbreak Risk from New Introductions of Ebola with Immediate and Delayed Transmission Control
On This Page
Damon J.A. Toth , Adi V. Gundlapalli, Karim Khader, Warren B.P. Pettey, Michael A. Rubin, Frederick R. Adler, and Matthew H. Samore
Abstract
While the ongoing Ebola outbreak continues in the West Africa countries of Guinea, Sierra Leone, and Liberia, health officials elsewhere prepare for new introductions of Ebola from infected evacuees or travelers. We analyzed transmission data from patients (i.e., evacuees, international travelers, and those with locally acquired illness) in countries other than the 3 with continuing Ebola epidemics and quantitatively assessed the outbreak risk from new introductions by using different assumptions for transmission control (i.e., immediate and delayed). Results showed that, even in countries that can quickly limit expected number of transmissions per case to <1, the probability that a single introduction will lead to a substantial number of transmissions is not negligible, particularly if transmission variability is high. Identifying incoming infected travelers before symptom onset can decrease worst-case outbreak sizes more than reducing transmissions from patients with locally acquired cases, but performing both actions can have a synergistic effect.
The ongoing Ebola outbreak in West Africa, thought to have begun from a single index case in Guinea in December 2013 (1), has produced thousands of cases in Guinea, Sierra Leone, and Liberia (2). This Ebola outbreak is the largest and most widespread since the Ebola virus was discovered in 1976 (3), and the probability of international spread outside of West Africa is not negligible (4). By late April 2015, the virus had been introduced by 7 infected people traveling during their incubation or symptomatic periods to a country other than Guinea, Sierra Leone, or Liberia. Of these 7 cases, 1 led to an outbreak with 19 transmissions in Nigeria (5,6); 1 led to 2 transmissions in the United States (7,8); 1 led to 7 transmissions in Mali (9,10); and 4 led to no transmissions in Mali (11), Senegal (12), the United States (13), and the United Kingdom (14). Additionally, 20 persons who acquired infection in Africa were transferred to the United States and several European countries for treatment (15), leading to 1 transmission in Spain (16).
Although none of these introductions led to a long chain of transmissions, even a small outbreak in a new country can cause societal disruption and disproportionate costs (17). Furthermore, how likely it is that an introduced case will lead to a substantial number of transmissions is unclear, even in settings with a quick and vigorous public health response to new outbreaks. Gomes et al. (4) performed simulations of Ebola outbreaks in each of 220 countries by first estimating the risk of Ebola being exported from Guinea, Liberia, or Sierra Leone by international travelers and then simulating a stochastic Ebola transmission model conditioned on an importation. The model incorporated Ebola transmission from infected persons in the community and hospital settings and from recently deceased Ebola patients. Assumptions used in the model were that only community transmissions are relevant outside of Africa and that transmissions occur at rates corresponding to containment measures already in place. Gomes et al. provided no explicitly numerical probabilities of large outbreaks per importation, but their simulations apparently produced <100 cases in each country.
In another study, Rainisch et al. (18) calculated the estimated number of beds required to treat Ebola patients in the United States by using estimates of importation frequency and subsequent transmission. These researchers reported a high estimate of 7 beds (95% CI 2–13) required at any 1 time; they also provided no numerical probabilities for their estimates.
In our study, we use a branching process model to estimate the probability distribution of outbreak sizes resulting from the introduction of an Ebola case to a new country where the reproductive number R (i.e., expected number of transmissions per case) would likely be quickly, if not immediately, reduced to <1. In this scenario, theory from subcritical branching processes (19), also known as mortal branching processes (20), guarantees that an outbreak will eventually die out, although perhaps not before a substantial number of transmissions occur. In the modeling literature, outbreaks that die out on their own have been called minor outbreaks (21) or stuttering chains (22). Such branching process models have been used to estimate transmission parameters in the context of emerging (22,23) or reemerging (19–21,24) infectious diseases. However, unlike other studies, we used the outbreak final size distribution equations derived from branching process theory to calculate the risk for a large Ebola outbreak under the assumptions of immediate and delayed transmission control after an importation.
Dr. Toth is an assistant professor in the Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA. His research interest is applied mathematics, specifically mathematical modeling of infection and transmission of pathogens to support risk assessment and intervention planning for public health.
References
- Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med.2014;371:1418–25. DOIPubMed
- Centers for Disease Control and Prevention. 2014 Ebola outbreak in West Africa—outbreak distribution map. 2015 Apr 17 [cited 2015 Apr 24].http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/distribution-map.html
- Centers for Disease Control and Prevention. Outbreaks chronology: Ebola virus disease. 2015 Apr 24 [cited 2015 Apr 24].http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html
- Gomes MFC, Postore y Piontti A, Rossi L, Chao D, Longini I, Halloran ME, Assessing the international spreading risk associated with the 2014 West African Ebola outbreak. PLoS Curr Outbreaks. 2014 Sep 2. Edition 1. http://dx.doi.org/10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
- Fasina FO, Shittu A, Lazarus D, Tomori O, Simonsen L, Viboud C, Transmission dynamics and control of Ebola virus disease outbreak in Nigeria, July to September 2014. Euro Surveill. 2014;19:20920.PubMed
- Shuaib F, Gunnala R, Musa EO, Mahoney FJ, Oguntimehin O, Nguku PM, Ebola virus disease outbreak—Nigeria, July–September 2014. MMWR Morb Mortal Wkly Rep. 2014;63:867–72.PubMed
- McCarty CL, Basler C, Karwowski M, Erme M, Nixon G, Kippes C, Response to importation of a case of Ebola virus disease—Ohio, October 2014.MMWR Morb Mortal Wkly Rep. 2014;63:1089–91.PubMed
- Chevalier MS, Chung W, Smith J, Weil LM, Hughes SM, Joyner SN, Ebola virus disease cluster in the United States—Dallas County, Texas, 2014.MMWR Morb Mortal Wkly Rep. 2014;63:1087–8.PubMed
- World Health Organization. Mali: details of the additional cases of Ebola virus disease. 2014 Nov 20 [cited 2015 Apr 24].http://www.who.int/mediacentre/news/ebola/20-november-2014-mali/en/
- World Health Organization. Mali confirms 2 new cases of Ebola virus disease. 2014 Nov 25 [cited 2015 Apr 24].http://www.who.int/mediacentre/news/ebola/25-november-2014-mali/en/
- World Health Organization. Mali case, Ebola imported from Guinea. 2014 Nov 10 [cited 2015 Apr 24].http://www.who.int/mediacentre/news/ebola/10-november-2014-mali/en/
- Mirkovic K, Thwing J, Diack PA. Importation and containment of Ebola virus disease— Senegal, August–September 2014. MMWR Morb Mortal Wkly Rep. 2014;63:873–4.PubMed
- Centers for Disease Control and Prevention. Cases of Ebola diagnosed in the United States. 2014 Dec 16 [cited 2015 Apr 24].http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/united-states-imported-case.html
- Jenkins L. Nurse who contracted Ebola released from hospital. 2015 Jan 24 [cited 2015 Apr 24].http://www.theguardian.com/world/2015/jan/24/ebola-pauline-cafferkey-recovery-discharge
- Public Health England. Ebola virus disease epidemiological update: no. 32. 2015 Apr 24 [cited 2015 Apr 24].https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/423997/EVD_Epidemiological_Update_24_April.pdf.
- Gulland A. Spanish authorities investigate how nurse contracted Ebola. BMJ. 2014;349:g6120. DOIPubMed
- Szabo L. Costs of responding to Ebola adding up. 2014 Nov 25 [cited 2015 Apr 24].http://www.usatoday.com/story/news/nation/2014/11/25/ebola-costs-add-up/19346913/
- Rainisch G, Asher J, George D, Clay M, Smith TL, Cosmos K, Estimating Ebola treatment needs, United States [letter]. Emerg Infect Dis. 2015 Jul [cited 2015 Apr 27].
- Farrington CP, Grant AD. The distribution of time to extinction in subcritical branching processes: applications to outbreaks of infectious disease. J Appl Probab. 1999;36:771–9. DOI
- Becker N. On parametric estimation for mortal branching processes. Biometrika. 1974;61:393–9. DOI
- Nishiura H, Yan P, Sleeman CK, Mode CJ. Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks. J Theor Biol. 2012;294:48–55. DOIPubMed
- Blumberg S, Lloyd-Smith JO. Inference of R0 and transmission heterogeneity from the size distribution of stuttering chains. PLOS Comput Biol.2013;9:e1002993. DOIPubMed
- Ferguson NM, Fraser C, Donnelly CA, Ghani AC, Anderson RM. Public health risk from the avian H5N1 influenza epidemic. Science.2004;304:968–9. DOIPubMed
- Jansen VAA, Stollenwerk N, Jensen HJ, Ramsay ME, Edmunds WJ, Rhodes CJ. Measles outbreaks in a population with declining vaccine uptake.Science. 2003;301:804. DOIPubMed
- Lloyd-Smith JO, Schreiber SJ, Kopp PE, Getz WM. Superspreading and the effect of individual variation on disease emergence. Nature.2005;438:355–9. DOIPubMed
- DiCiccio T, Efron B. Bootstrap confidence intervals. Stat Sci. 1996;11:189–228 .DOI
- Arnold TB, Emerson JW. Nonparametric goodness-of-fit tests for discrete null distributions. R J. 2011;3/2:34–9.
- Consul PC, Shenton LR. Use of Lagrange expansion for generating discrete generalized probability distributions. SIAM J Appl Math.1972;23:239–48. DOI
- Consul PC, Famoye F. Lagrangian probability distributions. Boston: Birkhauser; 2006.
- Centers for Disease Control and Prevention. Interim guidance for U.S. hospital preparedness for patients under investigation (PUIs) or with confirmed Ebola virus disease (EVD): a framework for a tiered approach. 2015 Feb 20 [cited 2015 Apr 24]. http://www.cdc.gov/vhf/ebola/hcp/us-hospital-preparedness.html
- Althaus CL. Ebola superspreading: the real lessons from HIV scale-up. Lancet Infect Dis. 2015;15:507–8. DOIPubMed
- Faye O, Boelle P, Heleze E, Faye O, Loucoubar C, Magassouba N, Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. Lancet Infect Dis. 2015;15:320–6. DOIPubMed
- Bogoch II, Creatore MI, Cetron MS, Brownstein JS, Pesik N, Miniota J, Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African outbreak. Lancet. 2015;385:29–35. DOIPubMed
- Rainisch G, Shankar M, Wellman M, Merlin T, Meltzer MI. Regional spread of Ebola virus, West Africa, 2014. Emerg Infect Dis. 2015;21:444–7.DOIPubMed
- Chowell D, Castillo-Chavez C, Krishna S, Qiu X, Anderson KS. Modelling the effect of early detection of Ebola. Lancet Infect Dis. 2015;15:148–9.DOIPubMed
Figures
Tables
Technical Appendix
Suggested citation for this article: Toth DJA, Gundlapalli AV, Khader K, Pettey WBP, Rubin MA, Adler FR, et al. Estimates of outbreak risk from new introductions of Ebola with immediate and delayed transmission control. Emerg Infect Dis. 2015 Aug [date cited].http://dx.doi.org/10.3201/eid2108.150170
No hay comentarios:
Publicar un comentario