martes, 21 de octubre de 2014

Seroprevalence of Norovirus Genogroup IV Antibodies among Humans, Italy, 2010–2011 - Volume 20, Number 11—November 2014 - Emerging Infectious Disease journal - CDC

FULL-TEXT ►

Seroprevalence of Norovirus Genogroup IV Antibodies among Humans, Italy, 2010–2011 - Volume 20, Number 11—November 2014 - Emerging Infectious Disease journal - CDC







Volume 20, Number 11—November 2014

Research

Seroprevalence of Norovirus Genogroup IV Antibodies among Humans, Italy, 2010–2011

Barbara Di MartinoComments to Author , Federica Di Profio, Chiara Ceci, Elisabetta Di Felice, Kim Y. Green, Karin Bok, Simona De Grazia, Giovanni M. Giammanco, Ivano Massirio, Eleonora Lorusso, Canio Buonavoglia, Fulvio Marsilio, and Vito Martella
Author affiliations: Università degli Studi di Teramo, Teramo, Italy (B. Di Martino, F. Di Profio, C. Ceci, E. Di Felice, F. Marsilio)National Institutes of Health, Bethesda, Maryland, U.S.A. (K.Y. Green, K. Bok)Università degli Studi di Palermo, Palermo, Italy (S. De Grazia, G.M. Giammanco)Azienda USL di Reggio Emilia, Reggio Emilia, Italy (I. Massirio)Università Aldo Moro di Bari, Valenzano, Italy (E. Lorusso, C. Buonavoglia, V. Martella)

Abstract

Noroviruses (NoVs) of genogroup IV (GIV) (Alphatron-like) cause infections in humans and in carnivorous animals such as dogs and cats. We screened an age-stratified collection of serum samples from 535 humans in Italy, using virus-like particles of genotypes GIV.1, circulating in humans, and GIV.2, identified in animals, in ELISA, in order to investigate the prevalence of GIV NoV-specific IgG antibodies. Antibodies specific for both genotypes were detected, ranging from a prevalence of 6.6% to 44.8% for GIV.1 and from 6.8% to 15.1% for GIV.2 among different age groups. These data are consistent with a higher prevalence of GIV.1 strains in the human population. Analysis of antibodies against GIV.2 suggests zoonotic transmission of animal NoVs, likely attributable to interaction between humans and domestic pets. This finding, and recent documentation of human transmission of NoVs to dogs, indicate the possibility of an evolutionary relationship between human and animal NoVs.
Noroviruses (NoVs) are a major cause of epidemic gastroenteritis in children and adults. They cause nearly half of all gastroenteritis cases and >90% of nonbacterial gastroenteritis epidemics worldwide (1). NoVs belong to the genus Norovirus in the family Caliciviridae (2,3). NoV virions are nonenveloped and ≈30 to 35 nm in diameter. The icosahedral capsid surrounds a 7.7-kb positive-sense single-stranded RNA genome covalently linked to viral protein g (VPg) at the 5′ end and polyadenylated at the 3′ end (4). The RNA genome is organized into 3 open reading frames (ORFs). ORF1 encodes a polyprotein that is cleaved by the virus-encoded protease to produce several nonstructural proteins, including the RNA-dependent RNA polymerase; ORF2 encodes a major capsid protein, VP1; and ORF3 encodes a small basic protein (VP2) that has been associated with the stability of the capsid (4,5). Based on the full-length VP1 aa sequence, NoVs have been divided into 6 genogroups (GI to GVI) and multiple genotypes (6,7). However, only GI, GII, and GIV NoVs have been shown to infect humans; GII strains are the most prevalent worldwide (4). Human GIV NoV (Alphatron-like) strains have been identified at low prevalence from either sporadic cases or outbreaks of human gastroenteritis (810). However, analysis of wastewater, sewage, and seafood in Japan and Italy has revealed, indirectly, that GIV NoVs are common in humans (1114).
GIV.2 NoVs (strain GIV.2/Pistoia/387/06/ITA) were first detected in the feces of a captive lion cub with severe hemorrhagic enteritis in Italy (15). Subsequently, similar NoVs were identified in fecal samples of dogs and cats with diarrhea (16,17). Sequence comparison in the VP1 of human and animal GIV NoVs has revealed that, although they are genetically related, the 2 groups of viruses represent 2 distinct genotypes: GIV.1 viruses predominate in humans and GIV.2 in animals (7,15). Historical evidence shows that viruses genetically and antigenically closely related to human NoVs might infect animals (1519). Also, a human GII.4 NoV strain has been found to replicate and cause clinical signs and lesions in experimentally-infected gnotobiotic pigs and calves (20,21). These findings have raised public health concerns about potential cross-species transmission and generation of novel human NoV strains by recombination. The close genetic relatedness (17,22) of human and animal GIV NoVs indicates that they may have originated from a common ancestor. Interspecies transmission between humans and pets might have been facilitated by the social interactions established since domestication of small carnivores. This eventuality has been demonstrated firmly in a recent study in Finland, which reported the detection of GII.4 and GII.12 NoVs in the dogs belonging to human patients hospitalized with NoV gastroenteritis (19). To address whether cross-species transmission of GIV.2 might occur between carnivores and humans, we investigated the prevalence of antibodies against GIV.1 and GIV.2 NoVs in a representative population in Italy spanning all age groups.

Dr Di Martino is a researcher at the Faculty of Veterinary Medicine of Teramo, Italy. Her research interests include the study of human and animal noroviruses, with particular emphasis on development of recombinant diagnostic tools.

Acknowledgment

This study was supported by grants from the University of Teramo, Italy, and from the Italian Ministry of University and Research, and was also partially funded by the intramural research program of the National Institute of Infectious Diseases, National Institutes of Health, US.

References

  1. Patel MMWiddowson MAGlass RIAkazawa KVinjé JParashar UDSystematic literature review of role of noroviruses in sporadic gastroenteritis.Emerg Infect Dis2008;14:122431 . DOIPubMed
  2. Green JVinje JGallimore CIKoopmans MHale ABrown DWCapsid protein diversity among Norwalk-like viruses. Virus Genes2000;20:22736.DOIPubMed
  3. Carstens EBRatification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses (2009). Arch Virol.2010;155:13346DOIPubMed
  4. Green KY. Caliciviridae: The noroviruses. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, et al., editors. Fields virology, 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2007. p. 949–79.
  5. Bertolotti-Ciarlet ACrawford SEHutson AMEstes MKThe 3′ end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J Virol2003;77:1160315DOIPubMed
  6. Martella VDecaro NLorusso ERadogna AMoschidou PAmorisco FGenetic heterogeneity and recombination in canine noroviruses. J Virol.2009;83:113916DOIPubMed
  7. Zheng DPAndo TFrankhouser RLBeard RSGlass RIMonroe SSNorovirus classification and proposed strain nomenclature. Virology.2006;346:31223DOIPubMed
  8. Vinjé JKoopmans MPSimultaneous detection and genotyping of “Norwalk-like viruses” by oligonucleotide array in a reverse line blot hybridization format. J Clin Microbiol2000;38:2595601 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC86977/.PubMed
  9. Iritani NSeto YKubo HHaruki KAyata MOgura HPrevalence of “Norwalk-like virus” infections in outbreaks of acute nonbacterial gastroenteritis observed during the 1999–2000 season in Osaka City, Japan. J Med Virol2002;66:1318DOIPubMed
  10. La Rosa GPourshaban MIaconelli MMuscillo MDetection of genogroup IV noroviruses in environmental and clinical samples and partial sequencing through rapid amplification of cDNA ends. Arch Virol2008;153:207783DOIPubMed
  11. Kitajima MHaramoto EPhanuwan CKatayama HOhgaki SDetection of genogroup IV norovirus in wastewater and river water in Japan. Lett Appl Microbiol2009;49:6558DOIPubMed
  12. La Rosa GIaconelli MPourshaban MFratini MMuscillo MMolecular detection and genetic diversity of norovirus genogroup IV: a yearlong monitoring of sewage throughout Italy. Arch Virol2010;155:58993DOIPubMed
  13. La Rosa GFratini MSpuri Vennarucci VGuercio APurpari GMuscillo MGIV noroviruses and other enteric viruses in bivalves: a preliminary study. New Microbiol2012;35:2734 .PubMed
  14. Muscillo MFratini MGraffeo RSanguinetti MMartella VGreen KYGIV noroviruses in wastewaters and in stool specimens from hospitalized patients. Food Environ Virol. 2013
  15. Martella VCampolo MLorusso ECavicchio PCamero MBellacicco ALNorovirus in captive lion cub (Panthera leo). Emerg Infect Dis.2007;13:10713DOIPubMed
  16. Martella VLorusso EDecaro NElia GRadogna AD’Abramo MDetection and molecular characterization of a canine norovirus. Emerg Infect Dis.2008;14:13068DOIPubMed
  17. Pinto PWang QChen NDubovi EJDaniels JBMillward LMDiscovery and genomic characterization of noroviruses from a gastroenteritis outbreak in domestic cats in the US. PLoS ONE2012;7:e32739DOIPubMed
  18. Wang QHHan MCheethaam SSousa MFunk JASaif LJPorcine noroviruses related to human noroviruses. Emerg Infect Dis2005;11:187481.DOIPubMed
  19. Summa Mvon Bonsdorff CHMaunula LPet dogs—a transmission route for human noroviruses? J Clin Virol2012;53:2447DOIPubMed
  20. Cheetham SSouza MMeulia TGrimes SHan MGSaif LJPathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J Virol.2006;80:1037281DOIPubMed
  21. Souza MAzevedo MSJung KCheetham SSaif LJPathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4–HS66 strain of human norovirus. J Virol2008;82:177786DOIPubMed
  22. Eden JSLim KLWhite PAComplete genome of the human norovirus GIV.1 strain Lake Macquarie virus. J Virol2012;86:102512.DOIPubMed
  23. Bok KAbente EJRealpe-Quintero MMitra TSosnovtsev SVKapikian AZEvolutionary dynamics of GII.4 noroviruses over a 34-year period. J Virol2009;83:11890901DOIPubMed
  24. Di Martino BMarsilio FDi Profio FLorusso EFriedrich KGBuonavoglia CDetection of antibodies against norovirus genogroup GIV in carnivores.Clin Vaccine Immunol2010;17:1802DOIPubMed
  25. Bok KParra GIMitra TAbente EShaver CKBoon DChimpanzees as an animal model for human norovirus infection and vaccine development.Proc Natl Acad Sci U S A2011;108:32530DOIPubMed
  26. Jiang XWilton NZhong WMFarkas THuang PWBarrett EDiagnosis of human calicivirus by use of enzyme immunoassays. J Infect Dis.2000;181:S34959 . DOIPubMed
  27. Peasey AERuiz-Palacios GMQuigley MNewsholme WMartinez JRosales GSeroepidemiology and risk factors for sporadic norovirus/Mexico strain. J Infect Dis2004;189:202736DOIPubMed
  28. Farkas TNakajima SSugieda MDeng XZhong WMJiang XSeroprevalence of noroviruses in swine. J Clin Microbiol2005;43:65761.DOIPubMed
  29. Gray JJJiang XMorgan-Capner PDesselberger UEstes MKPrevalence of antibodies to Norwalk virus in England: detection by enzyme-linked immunosorbent assay using baculovirus-expressed Norwalk virus capsid antigen. J Clin Microbiol1993;31:10225 .PubMed
  30. Jing YQian YHuo YWang LPJiang XSeroprevalence against Norwalk-like human caliciviruses in Beijing, China. J Med Virol2000;60:97101.DOIPubMed
  31. Jiang XMatson DORuiz-Palacios GMHu JTreanor JPickering LKExpression, self-assembly, and antigenicity of a snow mountain agent-like calicivirus capsid protein. J Clin Microbiol1995;33:14525 .PubMed
  32. Nurminen KBlazevic VHuhti LRäsänem SKoho THytönen VPPrevalence of norovirus GII.4 antibodies in Finnish children. J Med Virol.2011;83:52531DOIPubMed
  33. Farkas TThornton SAWilton NZhong WAltaye MJiang XHomologous versus heterologous immune responses to Norwalk-like viruses among crew members after acute gastroenteritis outbreaks on 2 US Navy vessels. J Infect Dis2003;187:18793DOIPubMed
  34. Mesquita JRCostantini VPCannon JLLin SCNascimento MSVinjé JPresence of antibodies against genogroup VI norovirus in humans. Virol J.2013;10:176DOIPubMed
  35. Pelosi ELambden PRCaul EOLiu BDingle KDeng YThe seroepidemiology of genogroup 1 and genogroup 2 Norwalk-like viruses in Italy. J Med Virol1999;58:939DOIPubMed
  36. Honma SNakata SNumata KKogawa KYamashita TOseto MEpidemiological study of prevalence of genogroup II human calicivirus (Mexico virus) infections in Japan and Southeast Asia as determined by enzyme-linked immunosorbent assays. J Clin Microbiol1998;36:24814 .PubMed
  37. Son HJeong HSCho MLee JLee HYoon KSeroepidemiology of predominant norovirus strains circulating in Korea by using recombinant virus-like particle antigens. Foodborne Pathog Dis2013;10:4616DOIPubMed

Figure

Table

Suggested citation for this article: Di Martino B, Di Profio F, Ceci C, Di Felice E, Green KY, Bok K, et al. Seroprevalence of norovirus genogroup IV antibodies among humans, Italy, 2010–2011. Emerg Infect Dis. 2014 Nov [date cited]. http://dx.doi.org/10.3201/eid2011.131601
DOI: 10.3201/eid2011.131601

No hay comentarios:

Publicar un comentario