Ahead of Print -Deaths Attributable to Carbapenem-Resistant Enterobacteriaceae Infections - Volume 20, Number 7—July 2014 - Emerging Infectious Disease journal - CDC
Volume 20, Number 7—July 2014
Research
Deaths Attributable to Carbapenem-ResistantEnterobacteriaceae Infections
Deaths Attributable to Carbapenem-Resistant EnterobacteriaceaeInfections
Matthew E. Falagas1 , Giannoula S. Tansarli1, Drosos E. Karageorgopoulos1, and Konstantinos Z. Vardakas1
Author affiliations: Alfa Institute of Biomedical Sciences, Athens, Greece (M.E. Falagas, G.S. Tansarli, D.E. Karageorgopoulos, K.Z. Vardakas); Hellenic Center for Disease Control and Prevention, Athens (D.E. Karageorgopoulos); IASO Group, Athens (M.E. Falagas, K.Z. Vardakas); Tufts University School of Medicine, Boston, Massachusetts, USA (M.E. Falagas)
Abstract
We evaluated the number of deaths attributable to carbapenem-resistantEnterobacteriaceae by using studies from around the world published before April 9, 2012. Attributable death was defined as the difference in all-cause deaths between patients with carbapenem-resistant infections and those with carbapenem-susceptible infections. Online databases were searched, and data were qualitatively synthesized and pooled in a metaanalysis. Nine studies met inclusion criteria: 6 retrospective case–control studies, 2 retrospective cohort studies, and 1 prospective cohort study. Klebsiella pneumoniae was the causative pathogen in 8 studies; bacteremia was the only infection in 5 studies. We calculated that 26%–44% of deaths in 7 studies were attributable to carbapenem resistance, and in 2 studies, which included bacteremia and other infections, −3% and −4% of deaths were attributable to carbapenem resistance. Pooled outcomes showed that the number of deaths was significantly higher in patients with carbapenem-resistant infections and that the number of deaths attributable to carbapenem resistance is considerable.
Carbapenem-resistant strains have emerged among species belonging to the Enterobacteriaceaefamily (1,2). Carbapenemases are a class of enzymes that can confer resistance to carbapenems and other β-lactam antibiotic drugs, but not all carbapenemase-producing isolates are carbapenem-resistant (3,4). Among the known carbapenemases are Klebsiella pneumoniaecarbapenemase (KPC) and Verona integrin–encoded metallo-β-lactamase (VIM) (5). Several outbreaks caused by carbapenem-resistant Enterobacteriaceae (CRE) have been recorded in health care facilities around the world (6–13), and in some places, CRE have become endemic (14–18). Serious concurrent conditions (3,4,19–22) and prior use of fluoroquinolones (20,23,24), carbapenems (22,25), or broad-spectrum cephalosporins (20,22) have been independently associated with acquisition of infections caused by CRE.
Several studies have provided data regarding clinical outcomes for CRE infections. However, controversy remains concerning the number of deaths among persons infected with CRE compared with the number among persons infected with carbapenem-susceptibleEnterobacteriaceae (CSE) (23,26). In this context, the goal of our study was to evaluate the number of deaths attributable to CRE infections by conducting a systematic review and metaanalysis of the available data.
Prof. Falagas, MD, MSc, DSc, is founder and director of the Alfa Institute of Biomedical Sciences, Athens, Greece; adjunct associate professor of Medicine at Tufts University School of Medicine, Boston, Massachusetts, USA; and director of the Department of Internal Medicine–Infectious Diseases, Iaso General Hospital, Iaso Group, Athens, Greece. His research interests include antimicrobial drug resistance and nosocomial infections.
Acknowledgment
The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, an exclusive license on a worldwide basis to the BMJ Publishing Group Ltd and its licensees to permit this article (if accepted) to be published in BMJ editions and any other BMJPGL products and sublicenses to exploit all subsidiary rights, as set out in our license.
References
- Hu F, Chen S, Xu X, Guo Y, Liu Y, Zhu D, Emergence of carbapenem-resistant clinicalEnterobacteriaceae isolates from a teaching hospital in Shanghai, China. J Med Microbiol.2012;61:132–6 .DOIPubMed
- Zarfel G, Hoenigl M, Wurstl B, Leitner E, Salzer HJ, Valentin T, Emergence of carbapenem-resistant Enterobacteriaceae in Austria, 2001–2010. Clin Microbiol Infect. 2011;17:E5–8 .DOIPubMed
- Daikos GL, Karabinis A, Paramythiotou E, Syriopoulou VP, Kosmidis C, Avlami A, VIM-1–producing Klebsiella pneumoniae bloodstream infections: analysis of 28 cases. Int J Antimicrob Agents. 2007;29:471–3 .DOIPubMed
- Daikos GL, Petrikkos P, Psichogiou M, Kosmidis C, Vryonis E, Skoutelis A, Prospective observational study of the impact of VIM-1 metallo-beta-lactamase on the outcome of patients with Klebsiella pneumoniae bloodstream infections. Antimicrob Agents Chemother. 2009;53:1868–73 .DOIPubMed
- Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev.2007;20:440–58 .DOIPubMed
- Agodi A, Voulgari E, Barchitta M, Politi L, Koumaki V, Spanakis N, Containment of an outbreak of KPC-3–producing Klebsiella pneumoniae in Italy. J Clin Microbiol.2011;49:3986–9 .DOIPubMed
- Balkhy HH, El-Saed A, Al Johani SM, Francis C, Al-Qahtani AA, Al-Ahdal MN, The epidemiology of the first described carbapenem-resistant Klebsiella pneumoniae outbreak in a tertiary care hospital in Saudi Arabia: how far do we go? Eur J Clin Microbiol Infect Dis. 2012;31:1901–9 .DOIPubMed
- Borer A, Eskira S, Nativ R, Saidel-Odes L, Riesenberg K, Livshiz-Riven I, A multifaceted intervention strategy for eradication of a hospital-wide outbreak caused by carbapenem-resistant Klebsiella pneumoniae in southern Israel. Infect Control Hosp Epidemiol. 2011;32:1158–65 .DOIPubMed
- Cuzon G, Ouanich J, Gondret R, Naas T, Nordmann P. Outbreak of OXA-48–positive carbapenem-resistant Klebsiella pneumoniae isolates in France. Antimicrob Agents Chemother. 2011;55:2420–3 .DOIPubMed
- Gregory CJ, Llata E, Stine N, Gould C, Santiago LM, Vazquez GJ, Outbreak of carbapenem-resistant Klebsiella pneumoniae in Puerto Rico associated with a novel carbapenemase variant. Infect Control Hosp Epidemiol. 2010;31:476–84 .DOIPubMed
- Pereira GH, Garcia DO, Mostardeiro M, Ogassavara CT, Levin AS. Spread of carbapenem-resistant Klebsiella pneumoniae in a tertiary hospital in São Paulo, Brazil. J Hosp Infect.2011;79:182–3 .DOIPubMed
- Steinmann J, Kaase M, Gatermann S, Popp W, Steinmann E, Damman M, Outbreak due to a Klebsiella pneumoniae strain harbouring KPC-2 and VIM-1 in a German university hospital, July 2010 to January 2011. Euro Surveill. 2011;16:19944 .PubMed
- Zhang R, Wang XD, Cai JC, Zhou HW, Lv HX, Hu QF, Outbreak of Klebsiella pneumoniaecarbapenemase 2–producing K. pneumoniae with high qnr prevalence in a Chinese hospital. J Med Microbiol. 2011;60:977–82 .DOIPubMed
- Bratu S, Landman D, Haag R, Recco R, Eramo A, Alam M, Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med. 2005;165:1430–5 .DOIPubMed
- Endimiani A, Carias LL, Hujer AM, Bethel CR, Hujer KM, Perez F, Presence of plasmid-mediated quinolone resistance in Klebsiella pneumoniae isolates possessing blaKPC in the United States. Antimicrob Agents Chemother. 2008;52:2680–2 .DOIPubMed
- Leavitt A, Navon-Venezia S, Chmelnitsky I, Schwaber MJ, Carmeli Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital.Antimicrob Agents Chemother. 2007;51:3026–9 .DOIPubMed
- Pournaras S, Protonotariou E, Voulgari E, Kristo I, Dimitroulia E, Vitti D, Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J Antimicrob Chemother. 2009;64:348–52 .DOIPubMed
- Zagorianou A, Sianou E, Iosifidis E, Dimou V, Protonotariou E, Miyakis S, Microbiological and molecular characteristics of carbapenemase-producing Klebsiella pneumoniaeendemic in a tertiary Greek hospital during 2004–2010. Euro Surveill. 2012;17:20088 .PubMed
- Chang HJ, Hsu PC, Yang CC, Kuo AJ, Chia JH, Wu TL, Risk factors and outcomes of carbapenem-nonsusceptible Escherichia coli bacteremia: a matched case-control study. J Microbiol Immunol Infect. 2011;44:125–30 .DOIPubMed
- Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO. Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase–producing K. pneumoniae. Infect Control Hosp Epidemiol. 2009;30:1180–5 .DOIPubMed
- Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T,Bloodstream infections caused by metallo-β-lactamase/Klebsiella pneumoniaecarbapenemase–producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol. 2010;31:1250–6 .DOIPubMed
- Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of carbapenem-resistantKlebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies.Infect Control Hosp Epidemiol. 2008;29:1099–106 .DOIPubMed
- Falagas ME, Rafailidis PI, Kofteridis D, Virtzili S, Chelvatzoglou FC, Papaioannou V, Risk factors of carbapenem-resistant Klebsiella pneumoniae infections: a matched case control study. J Antimicrob Chemother. 2007;60:1124–30 .DOIPubMed
- Hussein K, Sprecher H, Mashiach T, Oren I, Kassis I, Finkelstein R. Carbapenem resistance among Klebsiella pneumoniae isolates: risk factors, molecular characteristics, and susceptibility patterns. Infect Control Hosp Epidemiol. 2009;30:666–71 .DOIPubMed
- Jeon MH, Choi SH, Kwak YG, Chung JW, Lee SO, Jeong JY, Risk factors for the acquisition of carbapenem-resistant Escherichia coli among hospitalized patients. Diagn Microbiol Infect Dis. 2008;62:402–6 .DOIPubMed
- Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect.2012;18:54–60 .DOIPubMed
- Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med.2002;21:1539–58 .DOIPubMed
- Gaviria D, Bixler D, Thomas CA, Ibrahim SM, Kallen A, Limbago B, Carbapenem-resistantKlebsiella pneumoniae associated with a long-term–care facility—West Virginia, 2009–2011. MMWR Morb Mortal Wkly Rep. 2011;60:1418–20 .PubMed
- Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y.Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother.2008;52:1028–33 .DOIPubMed
- Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect.2011;17:1798–803 .DOIPubMed
- Falagas ME, Karageorgopoulos DE, Nordmann P. Therapeutic options for infections withEnterobacteriaceae producing carbapenem-hydrolyzing enzymes. Future Microbiol.2011;6:653–66 .DOIPubMed
- Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev.2011;35:736–55 .DOIPubMed
- García-Sureda L, Doménech-Sánchez A, Barbier M, Juan C, Gascó J, Albertí S. OmpK26, a novel porin associated with carbapenem resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2011;55:4742–7 .DOIPubMed
- Schwaber MJ, Carmeli Y. Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother. 2007;60:913–20 .DOIPubMed
- Vardakas KZ, Rafailidis PI, Konstantelias AA, Falagas ME. Predictors of mortality in patients with infections due to multi-drug resistant Gram negative bacteria: the study, the patient, the bug or the drug? J Infect. 2013;66:401–14 .DOIPubMed
- Rottier WC, Ammerlaan HS, Bonten MJ. Effects of confounders and intermediates on the association of bacteraemia caused by extended-spectrum β-lactamase–producing Enterobacteriaceae and patient outcome: a meta-analysis. J Antimicrob Chemother.2012;67:1311–20 .DOIPubMed
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twentieth- informational supplement. Document M100–S20 Vol. 30 N. Wayne (PA): The Institute; 2010.
Figure
Technical Appendix
Suggested citation for this article: Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis. 2014 Jul [date cited]. http://dx.doi.org/10.3201/eid2007. 121004
DOI: 10.3201/eid2007.121004
1All authors contributed equally to this article.
No hay comentarios:
Publicar un comentario