sábado, 1 de marzo de 2014

Ahead of Print -Rapid Increase in Pertactin-deficient Bordetella pertussis Isolates, Australia - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC

full-text ►

Ahead of Print -Rapid Increase in Pertactin-deficient Bordetella pertussis Isolates, Australia - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC





Volume 20, Number 4—April 2014

Research

Rapid Increase in Pertactin-deficient Bordetella pertussisIsolates, Australia

Connie Lam, Sophie Octavia, Lawrence Ricafort, Vitali Sintchenko, Gwendolyn L. Gilbert, Nicholas Wood, Peter McIntyre, Helen Marshall, Nicole Guiso, Anthony D. Keil, Andrew Lawrence, Jenny Robson, Geoff Hogg, and Ruiting LanComments to Author 
Author affiliations: University of New South Wales, Sydney, New South Wales, Australia (C. Lam. S. Octavia, L. Ricafort, R. Lan);University of Sydney, Sydney (V. Sintchenko, G.L. Gilbert);Westmead Hospital, Sydney, (V. Sintchenko, N. Wood, P. McIntyre)University of Adelaide, Adelaide, South Australia, Australia (H. Marshall)Institut Pasteur, Paris, France (N. Guiso);Princess Margaret Hospital for Children, Perth, Western Australia, Australia (A.D. Keil)Women’s and Children’s Hospital, Adelaide (A. Lawrence)Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia (J. Robson)University of Melbourne, Parkville, Victoria, Australia (G. Hogg)

Abstract

Acellular vaccines against Bordetella pertussis were introduced in Australia in 1997. By 2000, these vaccines had replaced whole-cell vaccines. During 2008–2012, a large outbreak of pertussis occurred. During this period, 30% (96/320) of B. pertussis isolates did not express the vaccine antigen pertactin (prn). Multiple mechanisms of prn inactivation were documented, including IS481 and IS1002 disruptions, a variation within a homopolymeric tract, and deletion of the prn gene. The mechanism of lack of expression of prn in 16 (17%) isolates could not be determined at the sequence level. These findings suggest that B. pertussis not expressing prn arose independently multiple times since 2008, rather than by expansion of a single prn-negative clone. All but 1 isolate had ptxA1prn2, and ptxP3, the alleles representative of currently circulating strains in Australia. This pattern is consistent with continuing evolution of B. pertussis in response to vaccine selection pressure.
Bordetella pertussis is the gram-negative coccobacillus that causes the respiratory disease pertussis, also known as whooping cough. The incidence of pertussis infection and related deaths decreased dramatically after implementation of immunization with a whole-cell vaccine (WCV) during the 1950s. Because of side effects of WCV, such as high rates of fever and local reactions, and variable efficacy of WCVs, a less reactogenic acellular vaccine (ACV) was developed in the 1980s. ACVs have now replaced WCVs in many industrialized countries for primary and booster vaccinations against pertussis.
Figure 1
Thumbnail of Pertussis cases/100,000 population in Australia, 2008–20012, since mandatory reporting was instituted in 1991 and changes to pertussis vaccination schedule, including introduction of whole-cell vaccine (WCV) booster vaccinations for 4–5-year-old children in 1994–1995 and introduction of acellular vaccine (ACV) booster vaccinations in 1997. By 1999–2000, ACVs were used for all pertussis vaccinations. In 2003, the booster vaccinations for children 18 months of age was removed and repl
Figure 1. . Pertussis cases/100,000 population in Australia, 2008–20012, since mandatory reporting was instituted in 1991 and changes to pertussis vaccination schedule, including introduction of whole-cell vaccine (WCV) booster vaccinations for 4–5-year-old children...
Although ACV formulations differ in the number of component pertussis antigens, the vaccine used in Australia contains pertussis toxin (ptx), pertactin (prn), and filamentous hemagglutinin (fha). A 5-component (ptx, prn, fha, fimbrial antigen [fim]2, and fim3) ACV is used for short periods in some regions (1). ACVs were introduced for the fourth and fifth doses in most states in Australia during 1997 and for all doses during 1999 (Figure 1). South Australia introduced ACVs for all doses in 1997. The current vaccination schedule for pertussis comprise 3 primary doses of ACV at 2, 4, and 6 months of age, and a booster vaccination at 4 years of age. A booster vaccination with ACV at 18 months of age, which was introduced in 1985, was removed from the National Immunization Program in Australia in 2003, and an adult-formulated ACV was introduced for children at 12–17 years of age in school-based programs in 2004 (2,3).
Since 1991, data on reported pertussis cases show that outbreaks occurred in Australia in 1996–1997, 2001, and 2004, and a series of outbreaks occurred in different regions starting in 2008 (Figure 1) (2,3). Multiple factors probably contributed to the resurgence of pertussis in high-income countries that had long-standing pertussis immunization programs. These factors include waning immunity (exacerbated by the change from WCVs to ACVs and, in Australia, cessation of the booster vaccination at 18 months of age) and increased use of more sensitive diagnostic tests, such PCR (4).
An additional possible contributing factor is evolution of B. pertussis through vaccine-driven adaptation (5). The most prominent recent changes in circulating B. pertussis strains are polymorphisms within genes encoding 2 of the 3 main virulence factors (ptx and prn) contained in the vaccine. Variations have also been reported in ptxP, the promoter of the ptx operon (6). In Australia, we have shown by single nucleotide polymorphism (SNP) typing that among B. pertussis isolates, ptxP3–containing strains predominate (7), and these strains belong to SNP cluster I (8,9).
Surveillance of recent B. pertussis isolates in several countries has identified prn deletions and gene disruptions, which lead to lack of expression of mature prn (1013). This protein is a 69-kDa adhesin that aids B. pertussis attachment to epithelial cells and is one of the most polymorphic virulence genes within B. pertussis (it has 13 documented alleles) (5). SNPs and differences in the number of amino acid (GGFGP and PQP) repeats contribute to variation within the prn gene; variations are usually limited to 2 regions known as region 1 and region 2.
In this study, we identified B. pertussis isolates that do not express prn (prn negative) from a set of isolates collected in Australia during 1997–2012. We also characterized the causes of their lack of expression and evaluated trends in the proportion of prn-negative isolates over this period.

Acknowledgments

We thank the research staff of the Vaccinology and Immunology Research Trials Unit at the Women’s and Children’s Hospital, Adelaide, Verity Hill, and Mary Walker for providing assistance; Narelle Raven for providing technical assistance; and N. Guiso for providing polyclonal antibodies against ptx, fha, and prn.
National serosurveys used pertussis toxin provided by GlaxoSmithKline. N.W. and H.M. have been investigators in studies supported by pharmaceutical companies, including GlaxoSmithKline or Sanofi-Pasteur. H.M. has been given travel support by GlaxoSmithKine to present scientific data at international meetings. N.W. has been given travel support by GlaxoSmithKine to attend an advisory board meeting. Institutional support for serologic testing has been provided by GlaxoSmithKIine for investigator-led vaccine safety and immunogenicity studies conducted by H.M., P.M., and N.W.
This study was supported by the National Health and Medical Research Council (grant 1011942). H.M. was supported by Career Development Fellowship no. 1016272.

References

  1. Kurniawan JMaharjan RPChan WFReeves PRSintchenko VGilbert GLBordetella pertussis clones identified by multilocus variable-number tandem-repeat analysis. Emerg Infect Dis2010;16:297300DOIExternal Web Site IconPubMedExternal Web Site Icon
  2. Quinn HEMahajan DHueston LCampbell PMenzies RIGilbert GLThe seroepidemiology of pertussis in NSW: fluctuating immunity profiles related to changes in vaccination schedules. N S W Public Health Bull2011;22:2249DOIExternal Web Site IconPubMedExternal Web Site Icon
  3. Campbell PMcIntyre PQuinn HHueston LGilbert GLMcVernon JIncreased population prevalence of low pertussis toxin antibody levels in young children preceding a record pertussis epidemic in Australia. PLoS ONE2012;7:e35874DOIExternal Web Site IconPubMedExternal Web Site Icon
  4. Spokes PJQuinn HEMcAnulty JMReview of the 2008–2009 pertussis epidemic in NSW: notifications and hospitalisations. N S W Public Health Bull2010;21:16773DOIExternal Web Site IconPubMedExternal Web Site Icon
  5. Mooi FRvan der Maas NAde Melker HEPertussis resurgence: waning immunity and pathogen adaptation: two sides of the same coin. Epidemiol Infect2013;13:110DOIExternal Web Site IconPubMedExternal Web Site Icon
  6. Mooi FRvan Loo IHvan Gent MHe QBart MJHeuvelman KJBordetella pertussisstrains with increased toxin production associated with pertussis resurgence. Emerg Infect Dis2009;15:120613DOIExternal Web Site IconPubMedExternal Web Site Icon
  7. Lam COctavia SBahrame ZSintchenko VGilbert GLLan RSelection and emergence of pertussis toxin promoter ptxP3 allele in the evolution of Bordetella pertussis. Infect Genet Evol2012;12:4925DOIExternal Web Site IconPubMedExternal Web Site Icon
  8. Octavia SMaharjan RPSintchenko VStevenson GReeves PRGilbert GLInsight into evolution of Bordetella pertussis from comparative genomic analysis: evidence of vaccine-driven selection. Mol Biol Evol2011;28:70715DOIExternal Web Site IconPubMedExternal Web Site Icon
  9. Octavia SSintchenko VGilbert GLLawrence AKeil ADHogg GNewly emerging clones of Bordetella pertussis carrying prn2 and ptxP3 alleles implicated in Australian pertussis epidemic in 2008–2010. J Infect Dis2012;205:12204DOIExternal Web Site IconPubMedExternal Web Site Icon
  10. Hegerle NParis ASBrun DDore GNjamkepo EGuillot SEvolution of French Bordetella pertussis and Bordetella parapertussis isolates: increase of Bordetellae not expressing pertactin. Clin Microbiol Infect2012;•••:E3406PubMedExternal Web Site IconDOIExternal Web Site IconPubMedExternal Web Site Icon
  11. Bouchez VBrun DCantinelli TDore GNjamkepo EGuiso NFirst report and detailed characterization of B. pertussis isolates not expressing pertussis toxin or pertactin.Vaccine2009;27:603441DOIExternal Web Site IconPubMedExternal Web Site Icon
  12. Otsuka NHan HJToyoizumi-Ajisaka HNakamura YArakawa YShibayama K,Prevalence and genetic characterization of pertactin-deficient Bordetella pertussis in Japan. PLoS ONE2012;7:e31985DOIExternal Web Site IconPubMedExternal Web Site Icon
  13. Barkoff AMMertsola JGuillot SGuiso NBerbers GHe QAppearance of Bordetella pertussis strains not expressing the vaccine antigen pertactin in Finland. Clin Vaccine Immunol2012;19:17034DOIExternal Web Site IconPubMedExternal Web Site Icon
  14. Weber CBoursaux-Eude CCoralie GCaro VGuiso NPolymorphism of Bordetella pertussis isolates circulating for the last 10 years in France, where a single effective whole-cell vaccine has been used for more than 30 years. J Clin Microbiol.2001;39:4396403DOIExternal Web Site IconPubMedExternal Web Site Icon
  15. Mooi FRHallander HWirsing von Konig CHHoet BGuiso NEpidemiological typing ofBordetella pertussis isolates: recommendations for a standard methodology. Eur J Clin Microbiol Infect Dis2000;19:17481DOIExternal Web Site IconPubMedExternal Web Site Icon
  16. Fry NKNeal SHarrison TGMiller EMatthews RGeorge RCGenotypic variation in theBordetella pertussis virulence factors pertactin and pertussis toxin in historical and recent clinical isolates in the United Kingdom. Infect Immun2001;69:55208DOIExternal Web Site IconPubMedExternal Web Site Icon
  17. Mooi FRvan Oirschot HHeuvelman Kvan der Heide HGGaastra WWillems RJ.Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in the Netherlands: temporal trends and evidence for vaccine-driven evolution.Infect Immun1998;66:6705 .PubMedExternal Web Site Icon
  18. Boursaux-Eude CThiberge SCarletti GGuiso NIntranasal murine model of Bordetella pertussis infection: II. Sequence variation and protection induced by a tricomponent acellular vaccine. Vaccine1999;17:265160DOIExternal Web Site IconPubMedExternal Web Site Icon
  19. Kinnear SMBoucher PEStibitz SCarbonetti NHAnalysis of BvgA activation of the pertactin gene promoter in Bordetella pertussis. J Bacteriol1999;181:523441 .PubMedExternal Web Site Icon
  20. Bodilis HGuiso NVirulence of pertactin-negative Bordetella pertussis isolates from infants, France. Emerg Infect Dis2013;19:4714 . DOIExternal Web Site IconPubMedExternal Web Site Icon
  21. Queenan AMCassiday PKEvangelista APertactin-negative variants of Bordetella pertussis in the United States. N Engl J Med2013;368:5834DOIExternal Web Site IconPubMedExternal Web Site Icon
  22. Pawloski LCQueenan AMCassiday PKLynch ASHarrison MShang WPrevalence and molecular characterization of pertactin-deficient Bordetella pertussis in the US. Clin Vaccine Immunol. 2013. [Epub ahead of print].External Web Site Icon
  23. Schmidtke AJBoney KOMartin SWSkoff THTondella MLTatti KMPopulation diversity among Bordetella pertussis isolates, United States, 1935–2009. Emerg Infect Dis.2012;18:124855DOIExternal Web Site IconPubMedExternal Web Site Icon
  24. Kurova NNjamkepo EBrun DTseneva GGuiso NMonitoring of Bordetella isolates circulating in Saint Petersburg, Russia between 2001 and 2009. Res Microbiol.2010;161:8105DOIExternal Web Site IconPubMedExternal Web Site Icon
  25. Njamkepo ECantinelli TGuigon GGuiso NGenomic analysis and comparison ofBordetella pertussis isolates circulating in low and high vaccine coverage areas. Microbes Infect2008;10:15826DOIExternal Web Site IconPubMedExternal Web Site Icon
  26. Stibitz SIS481 and IS1002 of Bordetella pertussis create a 6-base-pair duplication upon insertion at a consensus target site. J Bacteriol1998;180:49636 .PubMedExternal Web Site Icon
  27. Parkhill JSebaihia MPreston AMurphy LDThomson NHarris DEComparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat Genet2003;35:3240DOIExternal Web Site IconPubMedExternal Web Site Icon
  28. Gogol EBCummings CABurns RCRelman DAPhase variation and microevolution at homopolymeric tracts in Bordetella pertussis. BMC Genomics2007;8:122DOIExternal Web Site IconPubMedExternal Web Site Icon
  29. Willems RPaul Avan der Heide HGter Avest ARMooi FRFimbrial phase variation inBordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J.1990;9:28039 .PubMedExternal Web Site Icon
  30. Salaün LSnyder LASaunders NJAdaptation by phase variation in pathogenic bacteria.Adv Appl Microbiol2003;52:263301DOIExternal Web Site IconPubMedExternal Web Site Icon
  31. van Gent Mvan Loo IHHeuvelman KJde Neeling AJTeunis PMooi FRStudies on prn variation in the mouse model and comparison with epidemiological data. PLoS ONE.2011;6:e18014DOIExternal Web Site IconPubMedExternal Web Site Icon
  32. Bassinet LGueirard PMaitre BHousset BGounon PGuiso NRole of adhesins and toxins in invasion of human tracheal epithelial cells by Bordetella pertussis. Infect Immun.2000;68:193441 . DOIExternal Web Site IconPubMedExternal Web Site Icon

Figures

Table

Technical Appendix

Suggested citation for this article: Lam C, Octavia S, Ricafort L, Sintchenko V, Gilbert GL, Wood N, et al. Rapid increase in pertactin-deficient Bordetella pertussis isolates, Australia. Emerg Infect Dis [Internet]. 2014 Apr [date cited]. http://dx.doi.org/10.3201/eid2004.131478External Web Site Icon
DOI: 10.3201/eid2004.131478

No hay comentarios:

Publicar un comentario