Ahead of Print -Epidemic of Mumps among Vaccinated Persons, the Netherlands, 2009–2012 - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC
Volume 20, Number 4—April 2014
Research
Epidemic of Mumps among Vaccinated Persons, the Netherlands, 2009–2012
Article Contents
Jussi Sane , Sigrid Gouma, Marion Koopmans, Hester de Melker, Corien Swaan, Rob van Binnendijk, and Susan Hahné
Author affiliations: National Institute for Public Health and the Environment, Bilthoven, the Netherlands (J. Sane, S. Gouma, M. Koopmans, H. de Melker, C. Swaan, R. van Binnendijk, S. Hahné);European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden (J. Sane); Erasmus Medical Centre, Rotterdam, the Netherlands (S. Gouma, M. Koopmans)
Abstract
To analyze the epidemiology of a nationwide mumps epidemic in the Netherlands, we reviewed 1,557 notified mumps cases in persons who had disease onset during September 1, 2009–August 31, 2012. Seasonality peaked in spring and autumn. Most case-patients were males (59%), 18–25 years of age (67.9%), and vaccinated twice with measles-mumps-rubella vaccine (67.7%). Nearly half (46.6%) of cases occurred in university students or in persons with student contacts. Receipt of 2 doses of vaccine reduced the risk for orchitis, the most frequently reported complication (vaccine effectiveness [VE] 74%, 95% CI 57%–85%); complications overall (VE 76%, 95% CI 61%–86%); and hospitalization (VE 82%, 95% CI 53%–93%). Over time, the age distribution of case-patients changed, and proportionally more cases were reported from nonuniversity cities (p<0.001). Changes in age and geographic distribution over time may reflect increased immunity among students resulting from intense exposure to circulating mumps virus.
Mumps is an acute illness caused by mumps virus (family Paramyxoviridae) and characterized by fever, swelling, and tenderness of >1 salivary gland, usually the parotid gland. Complications associated with mumps include orchitis (inflammation of the testes), meningitis, pancreatitis, and deafness. Mumps virus is spread in respiratory droplets, and the incubation period is 15–24 days (median 19) (1).
Vaccination for mumps has been in use in industrialized countries for decades (2). The Netherlands began mumps vaccination in 1987, using the measles, mumps, and rubella combination vaccine (MMR). The vaccine, containing the Jeryl-Lynn mumps virus strain, is administered in a 2-dose schedule at 14 months and 9 years of age. Vaccination coverage of >1 dose of MMR has consistently been >93% since the introduction of the vaccination program (3). After the MMR program was launched, the incidence of mumps in the Netherlands decreased considerably; nevertheless, during the 2000s, several mumps outbreaks were detected. In 2004, an outbreak occurred among students at an international school (4), and in 2007–2008, an outbreak was detected mainly in a religious community that had low vaccination coverage (5). Since the end of 2009, a countrywide epidemic has been ongoing, affecting mainly student populations (6,7).
Mumps was notifiable in the Netherlands before 1999 and was made notifiable again in December 2008 (5). Mumps surveillance reports are released biweekly or monthly and include data on age and sex distribution, geographic distribution, vaccination, and contact status of case-patients. The report is distributed to public health professionals, including epidemiologists, virologists, and local-level health professionals, but comprehensive spatiotemporal characterization of the surveillance data has not been conducted. To provide information for future mumps prevention efforts, we used this surveillance data to assess the rates of illness and complications associated with the ongoing outbreak, to understand who is at risk for infection, and to assess whether transmission patterns have changed over time.
Acknowledgments
We thank staff at Municipal Health Services, laboratories and clinicians reporting and investigating cases, Hein Boot (deceased) for his contribution to this paper, and Marianne van der Sande for critically reading the manuscript. We also acknowledge the contribution of Jane Whelan, Georgia Ladbury, and Nelly Fournet to mumps surveillance and Daphne Gijselaar and Jeroen Cremer in sequence analyses.
The fellowship of J.S. was funded by the European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control.
References
- Hviid A, Rubin S, Muhlemann K. Mumps. Lancet. 2008;371:932–44. DOIPubMed
- McLean HQ, Hickman CJ, Seward JF; World Health Organization Department of Immunization, Vaccines and Biologicals. The immunological basis for immunization series. Module 16: mumps. Geneva: The Organization; 2010 [cited 2014 Jan 10].http://whqlibdoc.who.int/publications/2010/9789241500661_eng.pdf
- van Lier EA, Oomen PJ, Oostenbrug MW, Zwakhals SL, Drijfhout IH, de Hoogh PA, High vaccination coverage of the National Immunization Programme in the Netherlands [in Dutch]. Ned Tijdschr Geneeskd. 2009;153:950–7 .PubMed
- Brockhoff HJ, Mollema L, Sonder GJ, Postema CA, van Binnendijk RS, Kohl RH, Mumps outbreak in a highly vaccinated student population, the Netherlands, 2004. Vaccine.2010;28:2932–6. DOIPubMed
- Snijders BE, van Lier A, van de Kassteele J, Fanoy EB, Ruijs WL, Hulshof F, Mumps vaccine effectiveness in primary schools and households, the Netherlands, 2008.Vaccine. 2012;30:2999–3002. DOIPubMed
- Greenland K, Whelan J, Fanoy E, Borgert M, Hulshof K, Yap KB, Mumps outbreak among vaccinated university students associated with a large party, the Netherlands, 2010.Vaccine. 2012;30:4676–80. DOIPubMed
- Whelan J, van Binnendijk R, Greenland K, Fanoy E, Khargi M, Yap K, Ongoing mumps outbreak in a student population with high vaccination coverage, Netherlands, 2010.Euro Surveill. 2010;15:19554 .PubMed
- Cortese MM, Jordan HT, Curns AT, Quinlan PA, Ens KA, Denning PM, Mumps vaccine performance among university students during a mumps outbreak. Clin Infect Dis.2008;46:1172–80. DOIPubMed
- Deeks SL, Lim GH, Simpson MA, Gagne L, Gubbay J, Kristjanson E, An assessment of mumps vaccine effectiveness by dose during an outbreak in Canada. CMAJ.2011;183:1014–20. DOIPubMed
- Calvert N, Ashton JR, Garnett E. Mumps outbreak in private schools: public health lessons for the post-Wakefield era. Lancet. 2013;381:1625–6. DOIPubMed
- Barskey AE, Schulte C, Rosen JB, Handschur EF, Rausch-Phung E, Doll MK, Mumps outbreak in Orthodox Jewish communities in the United States. N Engl J Med.2012;367:1704–13. DOIPubMed
- Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol.2010;17:1055–65. DOIPubMed
- Smits G, Mollema L, Hahne S, de Melker H, Tcherniaeva I, Waaijenborg S, Seroprevalence of mumps in the Netherlands: dynamics over a decade with high vaccination coverage and recent outbreaks. PLoS ONE. 2013;8:e58234. DOIPubMed
- Jokinen S, Osterlund P, Julkunen I, Davidkin I. Cellular immunity to mumps virus in young adults 21 years after measles-mumps-rubella vaccination. J Infect Dis. 2007;196:861–7. DOIPubMed
- Hassan J, Dean J, Moss E, Carr MJ, Hall WW, Connell J. Seroepidemiology of the recent mumps virus outbreaks in Ireland. J Clin Virol. 2012;53:320–4. DOIPubMed
- Cohen C, White JM, Savage EJ, Glynn JR, Choi Y, Andrews N, Vaccine effectiveness estimates, 2004–2005 mumps outbreak, England. Emerg Infect Dis. 2007;13:12–7 .PubMed
- Ovsyannikova IG, Jacobson RM, Dhiman N, Vierkant RA, Pankratz VS, Poland GA. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine. Pediatrics.2008;121:e1091–9. DOIPubMed
- Dayan GH, Rubin S. Mumps outbreaks in vaccinated populations: are available mumps vaccines effective enough to prevent outbreaks? Clin Infect Dis. 2008;47:1458–67. DOIPubMed
- Farrington CP. Estimation of vaccine effectiveness using the screening method. Int J Epidemiol. 1993;22:742–6. DOIPubMed
- Quinlisk MP. Mumps control today. J Infect Dis. 2010;202:655–6. DOIPubMed
- Cortese MM, Barskey AE, Tegtmeier GE, Zhang C, Ngo L, Kyaw MH, Mumps antibody levels among students before a mumps outbreak: in search of a correlate of immunity. J Infect Dis. 2011;204:1413–22. DOIPubMed
- Hahné S, Whelan J, van Binnendijk R, Swaan C, Fanoy E, Boot H, Mumps vaccine effectiveness against orchitis. Emerg Infect Dis. 2012;18:191–3. DOIPubMed
- Yung CF, Andrews N, Bukasa A, Brown KE, Ramsay M. Mumps complications and effects of mumps vaccination, England and Wales, 2002–2006. Emerg Infect Dis.2011;17:661–7. DOIPubMed
- Opstelten W, Hahne SJ, van Roijen JH, van Paridon L, Wolters B, Swaan CM. Mumps makes a comeback [in Dutch]. Ned Tijdschr Geneeskd. 2012;156:A5187 .PubMed
- Everberg G. Deafness following mumps. Acta Otolaryngol. 1957;48:397–403. DOIPubMed
- Hashimoto H, Fujioka M, Kinumaki H. An office-based prospective study of deafness in mumps. Pediatr Infect Dis J. 2009;28:173–5. DOIPubMed
- Ogbuanu IU, Kutty PK, Hudson JM, Blog D, Abedi GR, Goodell S, Impact of a third dose of measles-mumps-rubella vaccine on a mumps outbreak. Pediatrics. 2012;130:e1567–74.
Figure
Tables
- Table 1. Association between rates of mumps complications and hospitalization and MMR status, the Netherlands, September 1, 2009–August 31, 2012
- Table 2. Demographic characteristics and student status for 1,557 patients with mumps, by annual epidemic season, the Netherlands, September 1, 2009–August 31, 2012
Suggested citation for this article: Sane J, Gouma S, Koopmans M, de Melker H, Swaan C, van Binnendijk R, et al. Epidemic of mumps among vaccinated persons, the Netherlands, 2009–2012. Emerg Infect Dis [Internet]. 2014 Apr [date cited]. http://dx.doi.org/10.3201/eid2004.131681
DOI: 10.3201/eid2004.131681
No hay comentarios:
Publicar un comentario