Ahead of Print -Underdiagnosis of Foodborne Hepatitis A, the Netherlands, 2008–20101 - Volume 20, Number 4—April 2014 - Emerging Infectious Disease journal - CDC
Volume 20, Number 4—April 2014
Research
Underdiagnosis of Foodborne Hepatitis A, the Netherlands, 2008–20101
Article Contents
Mariska Petrignani , Linda Verhoef, Harry Vennema, Rianne van Hunen, Dominique Baas, Jim E. van Steenbergen, and Marion P.G. Koopmans
Author affiliations: Municipal Health Service Zoetermeer, Zoetermeer, the Netherlands (M. Petrignani, R. van Hunen);National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands (L. Verhoef, H. Vennema, D. Baas, J.E. van Steenbergen, M.P.G. Koopmans); Erasmus Medical Center, Rotterdam, the Netherlands (M.P.G. Koopmans); Leiden Medical University, Leiden, the Netherlands (J.E. van Steenbergen)
Abstract
Outbreaks of foodborne hepatitis A are rarely recognized as such. Detection of these infections is challenging because of the infection’s long incubation period and patients’ recall bias. Nevertheless, the complex food market might lead to reemergence of hepatitis A virus outside of disease-endemic areas. To assess the role of food as a source of infection, we combined routine surveillance with real-time strain sequencing in the Netherlands during 2008–2010. Virus RNA from serum of 248 (59%) of 421 reported case-patients could be sequenced. Without typing, foodborne transmission was suspected for only 4% of reported case-patients. With typing, foodborne transmission increased to being the most probable source of infection for 16%. We recommend routine implementation of an enhanced surveillance system that includes prompt forwarding and typing of hepatitis A virus RNA isolated from serum, standard use of questionnaires, data sharing, and centralized interpretation of data.
Hepatitis A virus (HAV) infection is an acute, usually self-limiting, illness; transmission is associated with suboptimal hygiene. Transmission occurs by the oral route, and infected persons can shed high amounts of infectious virus in their feces (1). Over recent decades, the incidence of HAV infections has been declining to a low level of transmission in high-income and middle-income countries. This epidemiologic shift results in a gradual shift in patient age and severity of first infection, from asymptomatic infections in very young children toward more severe illness in older children and adults. The World Health Organization estimates a case-fatality rate ranging from 0.1% for children <15 years of age to 2.1% for adults >40 years of age (2). As incidence of HAV decreases, the proportion of the population vulnerable to infection increases. Thus, paradoxically, hepatitis A virus could reemerge in regions where it is not endemic, affecting mostly adults. Risk for outbreaks with more severe illness becomes greater in countries where such epidemiologic transition has occurred.
In countries with low levels of HAV, the main risk comes from travel, secondary waves of transmission in households and schools, and (ongoing and sometimes epidemic) transmission among men who have sex with men (MSM) (3–11). However, the probable source of infection remains unknown for 20%–30% of cases, possibly because of transmission by persons with subclinical or missed primary cases, but alternatively because of food contamination. Although HAV is listed as the second most common foodborne virus (12), foodborne HAV infections are rarely reported, except when triggered by an unusual outbreak or event. In general, detection of a food source is difficult because the incubation period for hepatitis A is long (average 4 weeks); therefore, responses to food-consumption questionnaires, if administered, might be unreliable because of recall bias. Moreover, the food industry is a complex multinational system, and many high-risk products (shellfish, fresh or frozen fruits and vegetables) are produced in HAV-endemic countries. The common methods used for microbiological quality control of food do not reliably predict presence or absence of virus contamination (13). Virus contamination of high-risk foods is not uncommon; some of these products have a long shelf life as frozen or dried products in which HAV can survive for at least 2–3 months (14,15), and these products can be marketed over a wide geographic region. For these reasons, foodborne HAV infections are difficult to recognize.
These surveillance challenges might discourage physicians from trying to signal foodborne outbreaks. Large outbreaks are detected because of their large numbers. Slow and dispersed clusters can be detected through use of molecular typing, which enables linking of cases that otherwise could not be recognized as a cluster (16,17).
We assessed the role of food as a source of HAV in the Netherlands, a country with low-level endemic circulation of HAV. To do so, we conducted a 2-year study in which we combined detailed epidemiologic investigation with real-time strain sequencing for reported case-patients.
Dr Petrignani is a medical doctor who works as a liaison officer for the Dutch Center of Infectious Disease Control at the Municipal Health Service of Rotterdam. She is also a PhD candidate at the Erasmus Medical Center, Rotterdam. Her research interests are public health and infectious disease control.
Acknowledgment
We greatly appreciate the cooperation of all municipal health services and medical laboratories. In particular, we thank the team of the municipal health service Zoetermeer for their enthusiasm, support, and flexibility during data collection. We also thank Annelies Kroneman for help during startup of the project and Bas van der Veer and Jeroen Cremer for their devoted work on the serum.
References
- Tjon GM, Coutinho RA, van den Hoek A, Esman S, Wijkmans CJ, Hoebe CJ, High and persistent excretion of hepatitis A virus in immunocompetent patients. J Med Virol.2006;78:1398–405. DOIPubMed
- World Health Organization. The global prevalence of hepatitis A virus infection and susceptibility: a systematic review. Geneva: the Organization; 2009.
- Bruisten SM, van Steenbergen JE, Pijl AS, Niesters HG, van Doornum GJ, Coutinho RA.Molecular epidemiology of hepatitis A virus in Amsterdam, the Netherlands. J Med Virol.2001;63:88–95. DOIPubMed
- Tjon GM, Wijkmans CJ, Coutinho RA, Koek AG, van den Hoek JA, Leenders AC, Molecular epidemiology of hepatitis A in Noord-Brabant, the Netherlands. J Clin Virol.2005;32:128–36 . DOIPubMed
- van Steenbergen JE, Tjon G, van den Hoek A, Koek A, Coutinho RA, Bruisten SM. Two years' prospective collection of molecular and epidemiological data shows limited spread of hepatitis A virus outside risk groups in Amsterdam, 2000–2002. J Infect Dis.2004;189:471–82 . DOIPubMed
- Bruisten SM, Tjon GM, van den Hoek JA, Wijkmans CJ, Gotz HM, Coutinho RA. The molecular epidemiology of hepatitis A in the Netherlands; the usefulness of typing isolated viral strains [in Dutch]. Ned Tijdschr Geneeskd. 2007;151:2779–86 .PubMed
- Canuel M, De Serres G, Duval B, Gilca R, De Wals P, Gilca V. Trends of hepatitis A hospitalization and risk factors in Quebec, Canada, between 1990 and 2003. BMC Infect Dis. 2007;7:31. DOIPubMed
- Van Der Eerden LJ, Bosman A, Van Duynhoven YT. Surveillance of hepatitis A in the Netherlands 1993–2002 [in Dutch]. Ned Tijdschr Geneeskd. 2004;148:1390–4 .PubMed
- Stene-Johansen K, Tjon G, Schreier E, Bremer V, Bruisten S, Ngui SL, Molecular epidemiological studies show that hepatitis A virus is endemic among active homosexual men in Europe. J Med Virol. 2007;79:356–65. DOIPubMed
- Erhart LM, Ernst KC. The changing epidemiology of hepatitis A in Arizona following intensive immunization programs (1988–2007). Vaccine. 2012;30:6103–10 . DOIPubMed
- Klevens RM, Miller JT, Iqbal K, Thomas A, Rizzo EM, Hanson H, The evolving epidemiology of hepatitis A in the United States: incidence and molecular epidemiology from population-based surveillance, 2005–2007. Arch Intern Med. 2010;170:1811–8. DOIPubMed
- Greig JD, Todd EC, Bartleson CA, Michaels BS. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 1. Description of the problem, methods, and agents involved. J Food Prot. 2007;70:1752–61 .PubMed
- Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A, Sprong H, Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol. 2010;139(Suppl 1):S3–15. DOIPubMed
- Shieh YC, Stewart DS, Laird DT. Survival of hepatitis A virus in spinach during low temperature storage. J Food Prot. 2009;72:2390–3 .PubMed
- Butot S, Putallaz T, Sanchez G. Effects of sanitation, freezing and frozen storage on enteric viruses in berries and herbs. Int J Food Microbiol. 2008;126:30–5. DOIPubMed
- Verhoef L, Kouyos RD, Vennema H, Kroneman A, Siebenga J, van Pelt W, An integrated approach to identifying international foodborne norovirus outbreaks. Emerg Infect Dis.2011;17:412–8. DOIPubMed
- Amon JJ, Devasia R, Xia G, Nainan OV, Hall S, Lawson B, Molecular epidemiology of foodborne hepatitis A outbreaks in the United States, 2003. J Infect Dis.2005;192:1323–30. DOIPubMed
- Jacobsen KH, Wiersma ST. Hepatitis A virus seroprevalence by age and world region, 1990 and 2005. Vaccine. 2010;28:6653–7 . DOIPubMed
- Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2012;40(database issue):D48–53.
- Robertson BH, Jansen RW, Khanna B, Totsuka A, Nainan OV, Siegl G, Genetic relatedness of hepatitis A virus strains recovered from different geographical regions. J Gen Virol.1992;73:1365–77 . DOIPubMed
- Cristina J, Costa-Mattioli M. Genetic variability and molecular evolution of hepatitis A virus. Virus Res. 2007;127:151–7 . DOIPubMed
- Petrignani M, Harms M, Verhoef L, van Hunen R, Swaan C, van Steenbergen J, Update: a food-borne outbreak of hepatitis A in the Netherlands related to semidried tomatoes in oil, January–February 2010. [PMID]. Euro Surveill. 2010;15:19572.PubMed
- Donnan EJ, Fielding JE, Gregory JE, Lalor K, Rowe S, Goldsmith P, A multistate outbreak of hepatitis A associated with semidried tomatoes in Australia, 2009. Clin Infect Dis.2012;54:775–81. DOIPubMed
- Gallot C, Grout L, Roque-Afonso AM, Couturier E, Carrillo-Santisteve P, Pouey J, Hepatitis A associated with semidried tomatoes, France, 2010. Emerg Infect Dis. 2011;17:566–7. DOIPubMed
- European Center for Disease Prevention and Control. Technical Meeting on Hepatitis A Outbreak Response. Riga, November 2008 [cited 2012 Jul 20].http://ecdc.europa.eu/en/publications/publications/0811_mer_hepatitis_a_outbreak_response.pdf
- National Institute for Public Health and the Environment. Incidence of notified hepatitis A cases in the Netherlands per year; 2012 [in Dutch] [cited 2012 May 8].http://www.rivm.nl/onderwerpen/m/meldingsplicht_infectieziekten/open_rapportages_meldingsplichtige_infectieziekten/aantal_meldingen_per_infectieziekte_per_jaar
- Verhoef L, Boot HJ, Koopmans M, Mollema L, Van Der Klis F, Reimerink J, Changing risk profile of hepatitis A in the Netherlands: a comparison of seroprevalence in 1995–1996 and 2006–2007. Epidemiol Infect. 2011;139:1172–80 . DOIPubMed
- Faber MS, Stark K, Behnke SC, Schreier E, Frank C. Epidemiology of hepatitis A virus infections, Germany, 2007–2008. Emerg Infect Dis. 2009;15:1760–8. DOIPubMed
- Pérez-Sautu U, Costafreda MI, Lite J, Sala R, Barrabeig I, Bosch A, Molecular epidemiology of hepatitis A virus infections in Catalonia, Spain, 2005–2009: circulation of newly emerging strains. J Clin Virol. 2011;52:98–102. DOIPubMed
- Broman M, Jokinen S, Kuusi M, Lappalainen M, Roivainen M, Liitsola K, Epidemiology of hepatitis A in Finland in 1990–2007. J Med Virol. 2010;82:934–41. DOIPubMed
- Takahashi H, Yotsuyanagi H, Yasuda K, Koibuchi T, Suzuki M, Kato T, Molecular epidemiology of hepatitis A virus in metropolitan areas in Japan. J Gastroenterol.2006;41:981–6. DOIPubMed
- Normann A, Badur S, Onel D, Kilic A, Sidal M, Larouze B, Acute hepatitis A virus infection in Turkey. J Med Virol. 2008;80:785–90. DOIPubMed
- Robesyn E, De Schrijver K, Wollants E, Top G, Verbeeck J, Van Ranst M. An outbreak of hepatitis A associated with the consumption of raw beef. J Clin Virol. 2009;44:207–10. DOIPubMed
- Shieh YC, Khudyakov YE, Xia G, Ganova-Raeva LM, Khambaty FM, Woods JW, Molecular confirmation of oysters as the vector for hepatitis A in a 2005 multistate outbreak. J Food Prot. 2007;70:145–50 .PubMed
- Wheeler C, Vogt TM, Armstrong GL, Vaughan G, Weltman A, Nainan OV, An outbreak of hepatitis A associated with green onions. N Engl J Med. 2005;353:890–7. DOIPubMed
- Guillois-Bécel Y, Couturier E, Le Saux JC, Roque-Afonso AM, Le Guyader FS, Le Goas A, An oyster-associated hepatitis A outbreak in France in 2007. Euro Surveill. 2009;14:19144 .PubMed
- Halliday ML, Kang LY, Zhou TK, Hu MD, Pan QC, Fu TY, An epidemic of hepatitis A attributable to the ingestion of raw clams in Shanghai, China. J Infect Dis.1991;164:852–9. DOIPubMed
- Koopmans M, Vennema H, Heersma H, van Strien E, van Duynhoven Y, Brown D, Early identification of common-source foodborne virus outbreaks in Europe. Emerg Infect Dis.2003;9:1136–42. DOIPubMed
- Aarestrup FM, Brown EW, Detter C, Gerner-Smidt P, Gilmour MW, Harmsen D, Integrating genome-based informatics to modernize global disease monitoring, information sharing, and response. Emerg Infect Dis. 2012;18:e1 . DOIPubMed
Tables
- Table 1. Hepatitis A virus transmission categories and supplementary public health actions, the Netherlands, 2008–2010
- Table 2. Description of reported patients with hepatitis A virus infection, by age group, the Netherlands, 2008–2010
- Table 3. Hepatitis A transmission modes, the Netherlands, 2008–2010
- Table 4. Hepatitis A virus transmission categories after typing of 42 cases previously assigned to transmission category “unknown,” the Netherlands, 2008–2010
Suggested citation for this article: Petrignani M, Verhoef L, Vennema H, van Hunen R, Baas D, van Steenbergen JE, et al. Underdiagnosis of foodborne hepatitis A, the Netherlands, 2008–2010. Emerg Infect Dis [Internet]. 2014 Apr [date cited]. http://dx.doi.org/10.3201/eid2004.130753
DOI: 10.3201/eid2004.130753
1Preliminary results of this study were presented at the 15th Annual Meeting of the European Society for Clinical Virology; 2012 September 4–7; Madrid, Spain.
No hay comentarios:
Publicar un comentario