lunes, 20 de julio de 2015

Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012 - Volume 21, Number 8—August 2015 - Emerging Infectious Disease journal - CDC

full-text ►

Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012 - Volume 21, Number 8—August 2015 - Emerging Infectious Disease journal - CDC







Volume 21, Number 8—August 2015

Research

Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012

Simon PollettComments to Author , Martha I. Nelson, Matthew Kasper, Yeny Tinoco, Mark Simons, Candice Romero, Marita Silva, Xudong Lin, Rebecca A. Halpin, Nadia Fedorova, Timothy B. Stockwell, David Wentworth, Edward C. Holmes, and Daniel G. Bausch
Author affiliations: University of California San Francisco, California, USA (S. Pollett)United States Naval Medical Research Unit No. 6, Lima, Peru (S. Pollett, M. Kasper, Y. Tinoco, M. Simons, C. Romero, M. Silva, D.G. Bausch)University of Sydney, Sydney, New South Wales, Australia (S. Pollett, E.C. Holmes)National Institutes of Health, Bethesda, Maryland, USA (M.I. Nelson)Arizona State University, Tempe, Arizona, USA (M.I. Nelson)J. Craig Venter Institute, Rockville, Maryland, USA (X. Lin, R.A. Halpin, N. Fedorova, T.B. Stockwell, D. Wentworth);Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA (D.G. Bausch)

Abstract

It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source–sink model for a Latin American country. Viruses were obtained during 2010–2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains.
Worldwide, influenza virus causes substantial illness and death and considerable public health costs (1). Like other countries, Peru experiences a significant number of influenza cases (2,3). The epidemiology of influenza virus in tropical and low- to middle-income countries and the role they play in global influenza ecology remains unclear (4). One outstanding question is whether a global source–sink dynamic exists. In the source–sink model, countries have putative tropical sources of influenza characterized by year-round (or multiannual) transmission, local persistence of influenza lineages, and relatively high genetic diversity. Then, it is postulated, that influenza lineages migrate and seed seasonal epidemics in cooler temperate regions, where they experience interseasonal extinction (5). Determining if and where this source–sink dynamic exists is of major importance because the results could guide targeted influenza surveillance for vaccine recommendations, pandemic planning, and prediction of novel strains (4,6).
Most analyses of whether a global source population exists have focused on East and Southeast Asia, in part because several pandemic and seasonal epidemics appear to have originated in those areas (711). Because of the lower availability of local influenza sequence data from tropical Latin America, relatively little is known about the possible role that region plays in global influenza dynamics (12). Nonmolecular epidemiologic studies have hinted at climate-driven patterns of influenza virus spread in South America; for example, diffusion of influenza activity from tropical to temperate areas has been noted in Brazil (13). Peru’s diverse climates make it an ideal location to test aspects of the source–sink model in Latin America, particularly because some tropical areas in Peru are known to experience year-round influenza activity (14). In recent years, prospective community-based influenza-like illness (ILI) surveillance cohorts were established in multiple regions of Peru, providing a unique opportunity to examine the epidemiology of human influenza virus (15).
Our study objectives were to determine whether 1) a source–sink influenza dynamic exists within Peru, including the existence of genetically diverse hubs and virus lineage persistence between seasons; 2) Peru could act as a global source for influenza virus lineages that could seed temperate regions; and 3) influenza virus is circulating within Peru in a closed system. We also sought to compare the spatial dynamics of influenza A(H3N2) virus across the 4 climatically and demographically diverse Peruvian sites.
We based our analysis on human influenza A(H3N2) virus because, over a long-term scale, it is the best represented lineage in sequence databases, and it has caused regular seasonal influenza epidemics in both hemispheres, including in Latin America (16,17). Although much attention has been paid to the study of pandemic influenza A(H1N1)pdm09 virus (18), H3N2 virus remains a significant cause of influenza in Peru, is a dominant seasonal influenza A virus subtype in other regions of the world, and causes substantial illness and death in Peru and beyond. A key aspect of this study is that we obtained samples from diverse ecologies and populations, including viruses from large urban and semirural locations and diverse altitudes and climates, and the distance between study sites was sufficient to allow spatial analysis. In addition, the prospective cohort studies involved continuous, active, year-round surveillance that enabled capture of any interseasonal strains.
Dr. Pollett is an infectious disease physician and research scientist affiliated with the University of California San Francisco, the Marie Bashir Institute at the University of Sydney, and NAMRU-6. His main focus of research is in the molecular and digital epidemiology of communicable diseases, particularly in tropical regions.

Acknowledgments

We thank all participants and households who enrolled in this study, and we thank Sebastian Loli for his assistance. We gratefully acknowledge the authors and originating and submitting laboratories of the sequences from the Global Initiative on Sharing Avian Influenza Data EpiFlu Database that were used as comparator sequences for this research; accession numbers are listed in online Technical Appendix Table 4.
The study was funded by the CDC; the National Institutes of Health, Fogarty International Center; and the US Department of Defense Global Emerging Infections Surveillance (grant no. I0082_09_LI). Sequencing was performed by the J. Craig Venter Institute as a partner to the National Institute of Allergy and Infectious Disease’s Influenza Genome Sequencing Project. E.C.H. is supported by a National Health and Medical Research Council fellowship from the Australian government (AF30).

References

  1. Fineberg HVPandemic preparedness and response–lessons from the H1N1 influenza of 2009. N Engl J Med2014;370:133542DOIPubMed
  2. Forshey BMLaguna-Torres VAVilcarromero SBazan IRocha CMorrison ACEpidemiology of influenza-like illness in the Amazon Basin of Peru, 2008–2009. Influenza Other Respir Viruses. 2010;4:235–43.
  3. Tinoco YRazuri HOrtiz EJGomez JWiddowson MAUyeki TPreliminary population-based epidemiological and clinical data on 2009 pandemic H1N1 influenza A (pH1N1) from Lima, Peru. Influenza Other Respir Viruses. 2009;3:253–6.
  4. Viboud CAlonso WJSimonsen LInfluenza in tropical regions. PLoS Med2006;3:e89DOIPubMed
  5. Rambaut APybus OGNelson MIViboud CTaubenberger JKHolmes ECThe genomic and epidemiological dynamics of human influenza A virus.Nature2008;453:6159DOIPubMed
  6. Russell CAJones TCBarr IGCox NJGarten RJGregory VInfluenza vaccine strain selection and recent studies on the global migration of seasonal influenza viruses. Vaccine2008;26(Suppl 4):D314.PubMed
  7. Bahl JNelson MIChan KHChen RVijaykrishna DHalpin RATemporally structured metapopulation dynamics and persistence of influenza A H3N2 virus in humans. Proc Natl Acad Sci U S A2011;108:1935964DOIPubMed
  8. Le MQLam HMCuong VDLam TTHalpin RAWentworth DEMigration and persistence of human influenza A viruses, Vietnam, 2001–2008.Emerg Infect Dis2013;19:175665DOIPubMed
  9. Cheng XTan YHe MLam TTLu XViboud CEpidemiological dynamics and phylogeography of influenza virus in southern China. J Infect Dis.2013;207:10614DOIPubMed
  10. Tang JWNgai KLLam WYChan PKSeasonality of influenza A(H3N2) virus: a Hong Kong perspective (1997–2006). PLoS ONE2008;3:e2768.DOIPubMed
  11. Russell CAJones TCBarr IGCox NJGarten RJGregory VThe global circulation of seasonal influenza A (H3N2) viruses. Science.2008;320:3406DOIPubMed
  12. Nelson MIBalmaseda AKuan GSaborio SLin XHalpin RAThe evolutionary dynamics of influenza A and B viruses in the tropical city of Managua, Nicaragua. Virology2014;462–463:8190DOIPubMed
  13. Alonso WJViboud CSimonsen LHirano EWDaufenbach LZMiller MASeasonality of influenza in Brazil: a traveling wave from the Amazon to the subtropics. Am J Epidemiol2007;165:143442DOIPubMed
  14. Laguna-Torres VAGomez JOcana VAguilar PSaldarriaga TChavez EInfluenza-like illness sentinel surveillance in Peru. PLoS ONE.2009;4:e6118DOIPubMed
  15. Razuri HRomero CTinoco YGuezala MCOrtiz ESilva MPopulation-based active surveillance cohort studies for influenza: lessons from Peru.Bull World Health Organ2012;90:31820 .PubMed
  16. Cox NJSubbarao KGlobal epidemiology of influenza: past and present. Annu Rev Med2000;51:40721DOIPubMed
  17. The pink book. Influenza: epidemiology and prevention of vaccine-preventable diseases. Influenza virus [cited 2013 Nov 1].http://www.cdc.gov/vaccines/pubs/pinkbook/flu.html#flu
  18. Cheng VCTo KKTse HHung IFYuen KYTwo years after pandemic influenza A/2009/H1N1: what have we learned? Clin Microbiol Rev.2012;25:22363DOIPubMed
  19. Instituto Nacional de Estadistica e informatica [cited 2013 Oct 1]. http://www.inei.gob.pe
  20. Zhou BDonnelly MEScholes DTSt George KHatta MKawaoka YSingle-reaction genomic amplification accelerates sequencing and vaccine production for classical and swine origin human influenza a viruses. J Virol2009;83:1030913DOIPubMed
  21. Zhou BWentworth DEInfluenza A virus molecular virology techniques. Methods Mol Biol2012;865:17592.PubMed
  22. White paper on reference assembly in CLC Assembly Cell 3.0. May 10, 2010 [cited 2013 Nov 1]. http://www.clcbio.com/wp-content/uploads/2012/09/white_paper_on_reference_assembly_on_the_CLC_Assembly_Cell.pdf
  23. Squires RBNoronha JHunt VGarcia-Sastre AMacken CBaumgarth NInfluenza Research Database: an integrated bioinformatics resource for influenza research and surveillance. Influenza Other Respir Viruses. 2012;6:404–16.
  24. Tamura KPeterson DPeterson NStecher GNei MKumar SMEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol2011;28:27319DOIPubMed
  25. Darriba DTaboada GLDoallo RPosada DjModelTest 2: more models, new heuristics and parallel computing. Nat Methods2012;9:772.DOIPubMed
  26. Stamatakis ALudwig TMeier HRAxML-III: a fast program for maximum likelihood–based inference of large phylogenetic trees. Bioinformatics.2005;21:45663DOIPubMed
  27. Drummond AJSuchard MAXie DRambaut ABayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol2012;29:196973.DOIPubMed
  28. Parker JRambaut APybus OGCorrelating viral phenotypes with phylogeny: accounting for phylogenetic uncertainty. Infect Genet Evol.2008;8:23946DOIPubMed
  29. Nelson MISimonsen LViboud CMiller MATaylor JGeorge KSStochastic processes are key determinants of short-term evolution in influenza a virus. PLoS Pathog2006;2:e125DOIPubMed
  30. Holmes ECGhedin EMiller NTaylor JBao YSt George KWhole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol2005;3:e300DOIPubMed
  31. Nelson MISimonsen LViboud CMiller MAHolmes ECPhylogenetic analysis reveals the global migration of seasonal influenza A viruses. PLoS Pathog2007;3:12208DOIPubMed
  32. Lavenu ALeruez-Ville MChaix MLBoelle PYRogez SFreymuth FDetailed analysis of the genetic evolution of influenza virus during the course of an epidemic. Epidemiol Infect2006;134:51420DOIPubMed
  33. Nelson MINjouom RViboud CNiang MNKadjo HAmpofo WMultiyear persistence of 2 pandemic A/H1N1 influenza virus lineages in west Africa. J Infect Dis2014;210:1215DOIPubMed
  34. Lemey PRambaut ABedford TFaria NBielejec FBaele GUnifying viral genetics and human transportation data to predict the global transmission dynamics of human influenza H3N2. PLoS Pathog2014;10:e1003932DOIPubMed
  35. Asner GPLlactayo WTupayachi RLuna ERElevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc Natl Acad Sci U S A2013;110:184549DOIPubMed
  36. Chowell GViboud CMunayco CVGomez JSimonsen LMiller MASpatial and temporal characteristics of the 2009 A/H1N1 influenza pandemic in Peru. PLoS ONE2011;6:e21287DOIPubMed
  37. McCune SArriola CSGilman RHRomero MAAyvar VCama VAInterspecies interactions and potential Influenza A virus risk in small swine farms in Peru. BMC Infect Dis2012;12:58DOIPubMed

Figures

Tables

Technical Appendix

Suggested citation for this article: Pollett S, Nelson MI, Kasper M, Tinoco Y, Simons M, Romero C, et al. Phylogeography of influenza A(H3N2) virus in Peru, 2010–2012. Emerg Infect Dis. 2015 Aug [date cited]. http://dx.doi.org/10.3201/eid2108.150084
DOI: 10.3201/eid2108.150084

No hay comentarios:

Publicar un comentario