Escherichia coli O157 Outbreaks in the United States, 2003–2012 - Volume 21, Number 8—August 2015 - Emerging Infectious Disease journal - CDC
Volume 21, Number 8—August 2015
CME ACTIVITY - Synopsis
Escherichia coli O157 Outbreaks in the United States, 2003–2012
On This Page
Abstract
Infections with the Shiga toxin–producing bacterium Escherichia coli O157 can cause severe illness and death. We summarized reported outbreaks of E. coli O157 infections in the United States during 2003–2012, including demographic characteristics of patients and epidemiologic findings by transmission mode and food category. We identified 390 outbreaks, which included 4,928 illnesses, 1,272 hospitalizations, and 33 deaths. Transmission was through food (255 outbreaks, 65%), person-to-person contact (39, 10%), indirect or direct contact with animals (39, 10%), and water (15, 4%); 42 (11%) had a different or unknown mode of transmission. Beef and leafy vegetables, combined, were the source of >25% of all reported E. colioutbreaks and of >40% of related illnesses. Outbreaks attributed to foods generally consumed raw caused higher hospitalization rates than those attributed to foods generally consumed cooked (35% vs. 28%). Most (87%) waterborne E. coli outbreaks occurred in states bordering the Mississippi River.
Signs and symptoms of infection with Shiga toxin–producing Escherichia coli O157 can include diarrhea that is often bloody, severe stomach cramps, and vomiting; infection can progress to hemolytic uremic syndrome (HUS) and death (1). In the United States, these infections and related illnesses are estimated to cost >$405 million annually (2).
E. coli O157 can be transmitted to humans through contaminated food and water, directly between persons, and through contact with animals or their environment. The most common reservoir is cattle, and ground beef is the most frequently identified vehicle of transmission to humans. E. coli O157 was first recognized as a foodborne pathogen after outbreaks during 1982 were linked to ground beef consumption (1). Since then, many other sources have been identified (3), mostly through outbreak investigations. We describe the epidemiology of E. coliO157 outbreaks during 2003–2012.
Ms. Heiman is an epidemiologist in the Outbreak Response and Prevention Branch at the Centers for Disease Control and Prevention. Her primary research interests are in enteric disease surveillance, and outbreak investigation.
Acknowledgment
We thank Kristin Holt for input into the analysis and state and local public health officials for submitting outbreak reports to CDC.
References
- Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med. 1983;308:681–5. DOIPubMed
- Frenzen PD, Drake A, Angulo FJ. Economic cost of illness due to Escherichia coli O157 infections in the United States. J Food Prot. 2005;68:2623–30.PubMed
- Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis. 2005;11:603–9. DOIPubMed
- Hall AJ, Wikswo ME, Manikonda K, Roberts VA, Yoder JS, Gould LH. Acute gastroenteritis surveillance through the National Outbreak Reporting System, United States. Emerg Infect Dis. 2013;19:1305–9. DOIPubMed
- Gould LH, Walsh KA, Vieira AR, Herman K, Williams IT, Hall AJ, Surveillance for foodborne disease outbreaks—United States, 1998–2008. MMWR Surveill Summ. 2013;62:1–34 .PubMed
- Neil KP, Biggerstaff G, MacDonald JK, Trees E, Medus C, Musser KA, A novel vehicle for transmission of Escherichia coli O157:H7 to humans: multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough–United States, 2009. Clin Infect Dis. 2012;54:511–8. DOIPubMed
- Miller BD, Rigdon CE, Ball J, Rounds JM, Klos RF, Brennan BM, Use of traceback methods to confirm the source of a multistate Escherichia coliO157:H7 outbreak due to in-shell hazelnuts. J Food Prot. 2012;75:320–7. DOIPubMed
- Laidler MR, Tourdjman M, Buser GL, Hostetler T, Repp KK, Leman R, Escherichia coli O157: H7 infections associated with consumption of locally grown strawberries contaminated by deer. Clin Infect Dis. 2013;57:1129–34. DOIPubMed
- Kendall ME, Mody RK, Mahon BE, Doyle MP, Herman KM, Tauxe RV. Emergence of salsa and guacamole as frequent vehicles of foodborne disease outbreaks in the United States, 1973–2008. Foodborne Pathog Dis. 2013;10:316–22. DOIPubMed
- Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV. CDC PulseNet Task Force. PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis. 2001;7:382–9. DOIPubMed
- Erickson MC, Doyle MP. Food as a vehicle for transmission of Shiga toxin-producing Escherichia coli. J Food Prot. 2007;70:2426–49 .PubMed
- Hussein HS. Prevalence and pathogenicity of Shiga toxin–producing Escherichia coli in beef cattle and their products. J Anim Sci.2007;85(Suppl):E63–72. DOIPubMed
- Luchansky JB, Phebus RK, Thippareddi H, Call JE. Translocation of surface-inoculated Escherichia coli O157:H7 into beef subprimals following blade tenderization. J Food Prot. 2008;71:2190–7 .PubMed
- Laine ES, Scheftel JM, Boxrud DJ, Vought KJ, Danila RN, Elfering KM, Outbreak of Escherichia coli O157:H7 infections associated with nonintact blade-tenderized frozen steaks sold by door-to-door vendors. J Food Prot. 2005;68:1198–202 .PubMed
- Stopforth JD, Lopes M, Shultz JE, Miksch RR, Samadpour M. Microbiological status of fresh beef cuts. J Food Prot. 2006;69:1456–9 .PubMed
- Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW. Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci U S A. 2000;97:2999–3003. DOIPubMed
- Bell RG. Distribution and sources of microbial contamination on beef carcasses. J Appl Microbiol. 1997;82:292–300. DOIPubMed
- Gould LH, Demma L, Jones TF, Hurd S, Vugia DJ, Smith K, Hemolytic uremic syndrome and death in persons with Escherichia coli O157: H7 infection, foodborne diseases active surveillance network sites, 2000–2006. Clin Infect Dis. 2009;49:1480–5. DOIPubMed
- Cimolai N, Carter JE, Morrison BJ, Anderson JD. Risk factors for the progression of Escherichia coli O157:H7 enteritis to hemolytic-uremic syndrome. J Pediatr. 1990;116:589–92. DOIPubMed
- Chang HG, Tserenpuntsag B, Kacica M, Smith PF, Morse DL. Hemolytic uremic syndrome incidence in New York. Emerg Infect Dis. 2004;10:928–31.DOIPubMed
- Tserenpuntsag B, Chang HG, Smith PF, Morse DL. Hemolytic uremic syndrome risk and Escherichia coli O157:H7. Emerg Infect Dis.2005;11:1955–7. DOIPubMed
- Rowe PC, Orrbine E, Lior H, Wells GA, Yetisir E, Clulow M, Risk of hemolytic uremic syndrome after sporadic Escherichia coli O157:H7 infection: results of a Canadian collaborative study. J Pediatr. 1998;132:777–82. DOIPubMed
- Hancock DD, Besser TE, Rice DH, Herriott DE, Tarr PI. A longitudinal study of Escherichia coli O157 in fourteen cattle herds. Epidemiol Infect.1997;118:193–5. DOIPubMed
- Dunn JR, Keen JE, Thompson RA. Prevalence of Shiga-toxigenic Escherichia coli O157:H7 in adult dairy cattle. J Am Vet Med Assoc.2004;224:1151–8. DOIPubMed
- Barkocy-Gallagher GA, Arthur TM, Rivera-Betancourt M, Nou X, Shackelford SD, Wheeler TL, Seasonal prevalence of Shiga toxin-producingEscherichia coli, including O157:H7 and non-O157 serotypes, and Salmonella in commercial beef processing plants. J Food Prot. 2003;66:1978–86.PubMed
- Agricultural Marketing Resource Center. Lettuce Profile. 2005 4/2012 [cited 2013 May 29];http://www.agmrc.org/commodities__products/vegetables/lettuce/
- Sodha SV, Heiman K, Gould LH, Bishop R, Iwamoto M, Swerdlow DL, National patterns of Escherichia coli O157 infections, USA, 1996–2011.Epidemiol Infect. 2014;143:267–73. DOIPubMed
- Frank C, Kapfhammer S, Werber D, Stark K, Held L. Cattle density and Shiga toxin–producing Escherichia coli infection in Germany: increased risk for most but not all serogroups. Vector Borne Zoonotic Dis. 2008;8:635–44. DOIPubMed
- United States Department of Agriculture. 2007 Census of Agriculture, United States, online census highlights, Ag Atlas Maps: USDA. 2009 [cited 2015 May 6]. http://agcensus.usda.gov/Publications/2007/Online_Highlights/Ag_Atlas_Maps/
- Edrington TS, Callaway TR, Ives SE, Engler MJ, Looper ML, Anderson RC, Seasonal shedding of Escherichia coli O157: H7 in ruminants: a new hypothesis. Foodborne Pathog Dis. 2006;3:413–21. DOIPubMed
- Hancock DD, Rice DH, Thomas LA, Dargatz DA, Besser TE. Epidemiology of Escherichia coli O157 in feedlot cattle. J Food Prot. 1997;60:462–5http://www.ingentaconnect.com/content/iafp/jfp/1997/00000060/00000005/art00001.
- Garber L, Wells S, Schroeder-Tucker L, Ferris K. Factors associated with fecal shedding of verotoxin-producing Escherichia coli O157 on dairy farms.J Food Prot. 1999;62:307–12 .PubMed
- Chase-Topping M, Gally D, Low C, Matthews L, Woolhouse M. Super-shedding and the link between human infection and livestock carriage ofEscherichia coli O157. Nat Rev Microbiol. 2008;6:904–12. DOIPubMed
- Cooley M, Carychao D, Crawford-Miksza L, Jay MT, Myers C, Rose C, Incidence and tracking of Escherichia coli O157:H7 in a major produce production region in California. PLoS ONE. 2007;2:e1159. DOIPubMed
- Davis RK, Hamilton S, Brahana JV. Escherichia coli survival in mantled Karst springs and streams, Northwest Arkansas Ozarks, USA. J Am Water Resour Assoc. 2005;41:1279–87. DOI
- Scallan E, Jones TF, Cronquist A, Thomas S, Frenzen P, Hoefer D, Factors associated with seeking medical care and submitting a stool sample in estimating the burden of foodborne illness. Foodborne Pathog Dis. 2006;3:432–8. DOIPubMed
- National Association of County and City Health Officials. Local health department job losses and program cuts: findings from January/February 2010 survey. Washington: The Association; 2010.
- Voetsch AC, Kennedy MH, Keene WE, Smith KE, Rabatsky-Ehr T, Zansky S, Risk factors for sporadic Shiga toxin–producing Escherichia coli O157 infections in FoodNet sites, 1999–2000. Epidemiol Infect. 2007;135:993–1000. DOIPubMed
- Ong KL, Apostal M, Comstock N, Hurd S, Webb TH, Mickelson S, Strategies for surveillance of pediatric hemolytic uremic syndrome: Foodborne Diseases Active Surveillance Network (FoodNet), 2000–2007. Clin Infect Dis. 2012;54(suppl 5):S424–31. DOIPubMed
- Doyle MP, Erickson MC. Opportunities for mitigating pathogen contamination during on-farm food production. Int J Food Microbiol.2012;152:54–74. DOIPubMed
Figures
Tables
Suggested citation for this article: Heiman KE, Mody RK, Johnson SD, Griffin PM, Gould LH. Escherichia coli O157 outbreaks in the United States, 2003–2012. Emerg Infect Dis. 2015 Aug [date cited]. http://dx.doi.org/10.3201/eid2108.141364
No hay comentarios:
Publicar un comentario