martes, 9 de junio de 2015

Ahead of Print -Swine Influenza A(H3N2) Virus Infection in Immunocompromised Man, Italy, 2014 - Volume 21, Number 7—July 2015 - Emerging Infectious Disease journal - CDC

FULL-TEXT ►

Ahead of Print -Swine Influenza A(H3N2) Virus Infection in Immunocompromised Man, Italy, 2014 - Volume 21, Number 7—July 2015 - Emerging Infectious Disease journal - CDC



CDC. Centers for Disease Control and Prevention. CDC 24/7: Saving Lives. Protecting People.



Volume 21, Number 7—July 2015

Dispatch

Swine Influenza A(H3N2) Virus Infection in Immunocompromised Man, Italy, 2014

Technical Appendicies

Downloads

Antonio Piralla, Ana Moreno, Maria Ester Orlandi, Elena Percivalle, Chiara Chiapponi, Fausto Vezzoli, Fausto BaldantiComments to Author , and the Influenza Surveillance Study Group
Author affiliations: Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy (A. Piralla, M.E. Orlandi, E. Percivalle, F. Baldanti)Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy (A. Moreno)Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy (C. Chiapponi)Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Lodi, Italy (F. Vezzoli)

Abstract

Because swine influenza virus infection is seldom diagnosed in humans, its frequency might be underestimated. We report a immunocompromised hematologic patient with swine influenza A(H3N2) virus in 2014 in Italy. Local pigs were the source of this human infection.
Pigs are considered the “mixing vessel” in which avian, human, and swine influenza genetic material can be exchanged and result in new influenza viruses (1). Zoonotic influenza A infections in humans caused by swine influenza viruses (SIVs) have been infrequently reported in Europe (1,2), even though at least 19% of occupationally exposed humans, such as pig farmers, slaughterers, and veterinarians, have SIV antibodies (3). However, because the infection is clinically mild in most cases, its frequency might be underdiagnosed in humans (4).
Three influenza A subtypes (H1N1, H1N2, and H3N2) circulate in swine herds in Italy (1). We report a European swine A(H3N2) influenza virus that occurred in an immunocompromised man in Italy in 2014.
Dr. Piralla is a clinical virologist at the Molecular Virology Unit of the Fondazione IRCCS Policlinico San Matteo in Pavia, Italy. His main research interests include molecular epidemiology of respiratory viruses, the study of virus evolution and interaction with the host, and design of next-generation sequencing protocols to study virus evolution and new pathogen discovery.

Acknowledgments

Additional members of the Influenza Study Group who contributed data: Alessia Griello, Marta Premoli, Franscesca Rovida, Bianca Mariani (SS Virologia Molecolare, SC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy); Francesca Manola Adella (Dipartimento di Virologia, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy); Anna Maria Belloni (Azienda Sanitaria Locale); Maria Gramegna, Liliana Coppola, Alessandra Piatti, Laura Gemma Brenzoni (DG Sanità, Regione Lombardia, Milan, Italy); Mario Luini (Organizzazione Mondiale per la Salute degli Animali, Laboratorio di riferimento per l’Influenza Suina, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy); Emanuela Foni and Laura Baioni (Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Parma, Italy)
We thank the Direzione Generale Sanità, Regione Lombardia; the physicians and veterinarians of the Azienda Sanitaria Locale involved in case management; and all the collaborators in the case definition. We thank Daniela Sartori for manuscript editing and Laurene Kelly for English revision.
This study was supported by grants from the Ministero della Salute, Fondazione IRCCS Policlinico San Matteo, Ricerca Corrente (grant no. 80622), Progetto Cariplo 2011-0517, Milan, Italy, and by a grant from the Ministero della Salute, IZSLER PRC2012002.

References

  1. Zell RScholtissek CLudwig SGenetics, evolution, and the zoonotic capacity of European swine influenza viruses. Curr Top Microbiol Immunol.2013;370:2955DOIPubMed
  2. Myers KPOlsen CWGray GCCases of swine influenza in humans: a review of the literature. Clin Infect Dis2007;44:10848DOIPubMed
  3. Krumbholz ALange JDürrwald RWalther MMuller THKuhnel DPrevalence of antibodies to European porcine influenza viruses in humans living in high pig density areas of Germany. Med Microbiol Immunol (Berl)2014;203:1324DOIPubMed
  4. Gerloff NAKremer JRCharpentier ESausy AOlinger CMWeicherding PSwine influenza virus antibodies in humans, western Europe, 2009.Emerg Infect Dis2011;17:40311DOIPubMed
  5. Piralla ABaldanti FGerna GPhylogenetic patterns of human respiratory picornavirus species, including the newly identified group C rhinoviruses, during a 1-year surveillance of a hospitalized patient population in Italy. J Clin Microbiol2011;49:3736DOIPubMed
  6. World Health Organization. CDC protocol of realtime RTPCR for influenza A(H1N1). 2009 Oct 6 [cited 2009 Dec 15].http://www.who.int/csr/resources/publications/swineflu/CDCRealtimeRTPCR_SwineH1Assay-2009_20090430.pdf
  7. Hoffmann EStech JGuan YWebster RGPerez DRUniversal primer set for the full-length amplification of all influenza A viruses. Arch Virol.2001;146:227589DOIPubMed
  8. Lycett SJBaillie GCoulter EBhatt SKellam PMcCauley JWEstimating reassortment rates in co-circulating Eurasian swine influenza viruses. J Gen Virol2012;93:232636DOIPubMed
  9. Guindon SDufayard JFLefort VAnisimova MHordijk WGascuel ONew algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol2010;59:30721DOIPubMed
  10. Tamura KPeterson DPeterson NStecher GNei MKumar SMEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol2011;28:27319DOIPubMed
  11. Tharakaraman KRaman RStebbins NWViswanathan KSasisekharan VSasisekharan R. Antigenically intact hemagglutinin in circulating avian and swine influenza viruses and potential for H3N2 pandemic. Sci Rep. 2013;3:1822.
  12. World Organisation for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals. Chapter 2.08.08. Swine influenza [cited 2014 Jun 6]. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.08.08_SWINE_INFLUENZA.pdf
  13. Castrucci MRDonatelli ISidoli LBarigazzi GKawaoka YWebster RGGenetic reassortant between avian and human influenza a viruses in Italian pigs. Virology1993;193:5036DOIPubMed
  14. Epperson SJhung MRichards SQuinlisk PBall LMoll MHuman infections with influenza A(H3N2) variant virus in the United States, 2011–2012.Clin Infect Dis2013;57(Suppl 1):S411DOIPubMed
  15. Piralla AGozalo-Margüello MFiorina LRovida FMuzzi AColombo AADifferent drug-resistant influenza A(H3N2) variants in two immunocompromised patients treated with oseltamivir during the 2011–2012 influenza season in Italy. J Clin Virol2013;58:1327.DOIPubMed

Figures

Technical Appendix

Suggested citation for this article: Piralla A, Moreno A, Orlandi ME, Percivalle E, Chiapponi C, Vezzoli F, et al. Swine influenza A(H3N2) virus infection in immunocompromised man, Italy, 2014. Emerg Infect Dis. 2015 Jul [date cited]. http://dx.doi.org/10.3201/eid2107.140981
DOI: 10.3201/eid2107.140981
1Members of the Influenza Surveillance Study Group who contributed data are listed at the end of this article.

No hay comentarios:

Publicar un comentario