jueves, 21 de agosto de 2014

Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages - Volume 20, Number 9—September 2014 - Emerging Infectious Disease journal - CDC

FULL-TEXT ►

Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages - Volume 20, Number 9—September 2014 - Emerging Infectious Disease journal - CDC





Volume 20, Number 9—September 2014

Research

Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages

Xiangyu DengComments to Author , Prerak T. Desai, Henk C. den Bakker, Matthew Mikoleit, Beth Tolar, Eija Trees, Rene S. Hendriksen, Jonathan G. Frye, Steffen Porwollik, Bart C. Weimer, Martin Wiedmann, George M. Weinstock, Patricia I. Fields1, and Michael McClelland1
Author affiliations: University of Georgia, Griffin, Georgia, USA (X. Deng)University of California Irvine, Irvine, California, USA (P.T. Desai, S. Porwollik, M. McClelland)Cornell University, Ithaca, New York, USA (H.C. den Bakker, M. Wiedmann)Centers for Disease Control and Prevention, Atlanta, Georgia, USA (M. Mikoleit, B. Tolar, E. Trees, P.I. Fields)Technical University of Denmark, Lyngby, Denmark (R.S. Hendriksen)US Department of Agriculture, Athens, Georgia, USA (J.G. Frye)University of California Davis, Davis, California, USA (B.C. Weimer)Washington University School of Medicine, St. Louis, Missouri, USA (G.M. Weinstock)

Abstract

Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. entericaserotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th–18th centuries and diversified during the 1920s and 1950s.
Salmonella enterica causes ≈1 million illnesses and >350 deaths annually in the United States (1). Among >2,500 known serotypes, S. enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis in most industrialized countries (2). From the 1970s through the mid-1990s, the incidence of serotype Enteritidis infection increased dramatically; shelled eggs were a major vehicle for transmission. Despite a decrease in serotype Enteritidis infection since 1996 in the United States, outbreaks resulting from contaminated eggs continue to occur (3), and Enteritidis remains among the most common serotypes isolated from humans worldwide (2). Epidemiologic surveillance and outbreak investigation of microbial pathogens require subtyping that provides sufficient resolution to discriminate closely related isolates. Differentiation ofS. enterica Enteritidis challenges traditional subtyping methods, such as pulsed-field gel electrophoresis (PFGE), because isolates of serotype Enteritidis are more genetically homogeneous than are isolates of many other serotypes (4,5). Among the serotype Enteritidis isolates reported to PulseNet, ≈45% display a single PFGE XbaI pattern (JEGX01.0004), which renders PFGE ineffective in some investigations (5). Of the second-generation methods evaluated for S. enterica Enteritidis subtyping, multilocus variable number–tandem repeat analysis offers slightly better discrimination, but differentiating common patterns remains a substantial problem (6). Therefore, new methods are needed to better subtype and differentiate this serotype. Recent applications of whole-genome sequencing (WGS) have demonstrated exceptional resolution that enables fine delineation of infectious disease outbreaks (710).
In addition to sufficient subtyping resolution, accurately ascribing isolates to epidemiologically meaningful clusters, i.e., grouping isolates associated with an outbreak while discriminating unrelated strains, is critical for pathogen subtyping. Outbreak and epidemiologically unrelated isolates might not be differentiated by using current methods. Despite the high incidence of S. enterica Enteritidis infection in humans, genome sequencing of this serotype has lagged behind sequencing of other major foodborne pathogens. To our knowledge, only 1 finished S. enterica Enteritidis genome is publicly available (11). Recent sequencing of S. enterica Enteritidis genomes of the common PFGE XbaI pattern JEGX01.0004 has provided a valuable resource on the S. enterica Enteritidis genome (12). Here we present a broad sampling of WGS to include diversity of other major lineages.
We expanded the genomic population structure of S. enterica Enteritidis by sequencing a collection of 81 S. enterica Enteritidis genomes and 3 S. enterica serotype Nitra genomes selected to capture epidemiologic and phylogenetic diversity in current domestic and international serotype Enteritidis populations. We included serotype Nitra in the study because it is thought to be a variant of serotype Enteritidis with its O antigen (serogroup O2) being a minor genetic variant of serogroup O9 found in serotype Enteritidis (13). These genomes, along with 44 draft genomes of S. enterica Enteritidis (14 historical strains and 30 isolates selected from the 2010 egg outbreak investigation [http://www.cdc.gov/salmonella/enteritidis/]), provided a phylogenetic framework of diverse circulating serotype Enteritidis lineages. Model-based Bayesian estimation of age and effective population size of major S. enterica Enteritidis lineages showed that the spreading of S. enterica Enteritidis coincided with 2 periods: the 18th century period of colonial trade and the 20th century period of agricultural industrialization. A single-nucleotide polymorphism (SNP) pipeline was developed for high-throughput whole-genome SNP typing and was robust for combining data from different sequencing platforms in the same analysis. This enabled retrospective investigation of recent clinical cases in Thailand and the shelled eggs outbreak in the United States. The ability of whole-genome SNP typing to infer the polyclonal genomic nature of at least some S. enterica Enteritidis strains causing outbreaks, despite high genetic homogeneity among S. enterica Enteritidis genomes, demonstrates the utility and sensitivity of whole-genome SNP typing in epidemiologic surveillance and outbreak investigations. Potential challenges of whole-genome SNP typing, such as ways to accurately define individual outbreaks, were discussed.

Dr Deng is an assistant professor at the Center for Food Safety, University of Georgia, and a guest researcher at the Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention. His research interests focus on using genomic and molecular biology approaches to better understand the biology, transmission, and evolution of foodborne pathogens.

Acknowledgments

We thank the PulseNet participating laboratories, Thailand Ministry of Public Health, and the Central Health Laboratory Mauritius for contributing strains used in this study. We thank Mark Allard, Errol Strain, and Eric Brown for providing the 454 sequencing data and editorial suggestions on the manuscript. We thank Jean Guard for many helpful discussions.
X.D. was supported in part by an American Society for Microbiology/Centers for Disease Control and Prevention Fellowship and startup funds from University of Georgia. M.M., S.P., and P.D. were supported in part by National Institutes of Health grant nos. AI039557 AI052237, AI073971, AI075093, AI077645 AI083646, and HHSN272200900040C; US Department of Agriculture (USDA) grant nos. 2009-03579 and 2011-67017-30127; the Binational Agricultural Research and Development Fund; and a grant from the Center for Produce Safety. J.G.F was supported by USDA Agricultural Research Services project no. 6612-32000-006-00. H.dB. and M.W. were supported in part by USDA grant no. 2010-34459-20756

References

  1. Scallan EHoekstra RMAngulo FJTauxe RVWiddowson MARoy SLFoodborne illness acquired in the United States—major pathogens. Emerg Infect Dis2011;17:715 . DOIPubMed
  2. Hendriksen RSVieira ARKarlsmose SLo Fo Wong DMJensen ABWegener HCGlobal monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007.Foodborne Pathog Dis2011;8:887900DOIPubMed
  3. Braden CRSalmonella enterica serotype Enteritidis and eggs: a national epidemic in the United States. Clin Infect Dis2006;43:5127.DOIPubMed
  4. Olson ABAndrysiak AKTracz DMGuard-Bouldin JDemczuk WNg LKLimited genetic diversity in Salmonella enterica serovar Enteritidis PT13. BMC Microbiol2007;7:87DOIPubMed
  5. Zheng JKeys CEZhao SMeng JBrown EWEnhanced subtyping scheme for Salmonella Enteritidis. Emerg Infect Dis2007;13:19325.DOIPubMed
  6. Boxrud DPederson-Gulrud KWotton JMedus CLyszkowicz EBesser JComparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. J Clin Microbiol.2007;45:53643 . DOIPubMed
  7. Harris SRFeil EJHolden MTQuail MANickerson EKChantratita NEvolution of MRSA during hospital transmission and intercontinental spread. Science2010;327:46974 . DOIPubMed
  8. Rasko DAWebster DRSahl JWBashir ABoisen NScheutz FOrigins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany. N Engl J Med2011;365:70917DOIPubMed
  9. Eppinger MMammel MKLeclerc JERavel JCebula TAGenomic anatomy of Escherichia coli O157:H7 outbreaks. Proc Natl Acad Sci U S A.2011;108:201427DOIPubMed
  10. Chin CSSorenson JHarris JBRobins WPCharles RCJean-Charles RRThe origin of the Haitian cholera outbreak strain. N Engl J Med.2011;364:3342DOIPubMed
  11. Thomson NRClayton DJWindhorst DVernikos GDavidson SChurcher CComparative genome analysis of Salmonella Enteritidis PT4 andSalmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res2008;18:162437.DOIPubMed
  12. Allard MWLuo YStrain EPettengill JTimme RWang COn the evolutionary history, population genetics and diversity among isolates ofSalmonella Enteritidis PFGE pattern JEGX01.0004. PLoS ONE2013;8:e55254DOIPubMed
  13. Fitzgerald CCollins Mvan Duyne SMikoleit MBrown TFields PMultiplex, bead-based suspension array for molecular determination of common Salmonella serogroups. J Clin Microbiol2007;45:332334DOIPubMed
  14. Marttinen PHanage WPCroucher NJConnor TRHarris SRBentley SDDetection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res2012;40:e6DOIPubMed
  15. Tamura KPeterson DPeterson NStecher GNei MKumar SMEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol2011;28:27319DOIPubMed
  16. Drummond AJRambaut ABEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol2007;7:214DOIPubMed
  17. Okoro CKKingsley RAConnor TRHarris SRParry CMAl-Mashhadani MNIntracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet2012;44:121521DOIPubMed
  18. Bakker HCSwitt AICummings CAHoelzer KDegoricija LRodriguez-Rivera LDA whole-genome single nucleotide polymorphism–based approach to trace and identify outbreaks linked to a common Salmonella enterica subsp. enterica serovar Montevideo pulsed-field gel electrophoresis type. Appl Environ Microbiol2011;77:864855DOIPubMed
  19. Baele GLi WLDrummond AJSuchard MALemey PAccurate model selection of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol2013;30:23943DOIPubMed
  20. Bruen TCPhilippe HBryant DA simple and robust statistical test for detecting the presence of recombination. Genetics2006;172:266581.DOIPubMed
  21. Suchard MAWeiss RESinsheimer JSBayesian selection of continuous-time Markov chain evolutionary models. Mol Biol Evol2001;18:100113.DOIPubMed
  22. Gill MSLemey PFaria NRRambaut AShapiro BSuchard MAImproving Bayesian population dynamics inference: a coalescent-based model for multiple loci. Mol Biol Evol2013;30:71324DOIPubMed
  23. Drummond AJHo SYPhillips MJRambaut ARelaxed phylogenetics and dating with confidence. PLoS Biol2006;4:e88DOIPubMed
  24. Morelli GDidelot XKusecek BSchwarz SBahlawane CFalush DMicroevolution of Helicobacter pylori during prolonged infection of single hosts and within families. PLoS Genet2010;6:e1001036DOIPubMed
  25. Didelot XEyre DWCule MIp CLAnsari MAGriffiths DMicroevolutionary analysis of Clostridium difficile genomes to investigate transmission. Genome Biol2012;13:R118DOIPubMed
  26. Zhou ZMcCann ALitrup EMurphy RCormican MFanning SNeutral genomic microevolution of a recently emerged pathogen, Salmonella enterica serovar Agona. PLoS Genet2013;9:e1003471DOIPubMed
  27. Salmonella Subcommittee of the Nomenclature Committee of the International Society for MicrobiologyThe genus Salmonella Lignieres. 1900. J Hyg (Lond)1934;34:33350 .PubMed
  28. Bryant JEHolmes ECBarrett ADOut of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathog2007;3:e75DOIPubMed
  29. Bäumler AJHargis BMTsolis RMTracing the origins of Salmonella outbreaks. Science2000;287:502 . DOIPubMed
  30. Porwollik SBoyd EFChoy CCheng PFlorea LProctor ECharacterization of Salmonella enterica subspecies I genovars by use of microarrays. J Bacteriol2004;186:588398DOIPubMed
  31. Hyytiä-Trees ESmole SCFields PASwaminathan BRibot EMSecond generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin–producing Escherichia coli O157 (STEC O157). Foodborne Pathog Dis2006;3:11831 .DOIPubMed
  32. Liu FBarrangou RGerner-Smidt PRibot EMKnabel SJDudley EGNovel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica. Appl Environ Microbiol2011;77:194656DOIPubMed
  33. Stoddard RADeLong RLByrne BAJang SGulland FMPrevalence and characterization of Salmonella spp. among marine animals in the Channel Islands, California. Dis Aquat Organ2008;81:511DOIPubMed
  34. Hendriksen RSHyytia-Trees EPulsrikarn CPornruangwong SChaichana PSvendsen CACharacterization of Salmonella enterica serovar Enteritidis isolates recovered from blood and stool specimens in Thailand. BMC Microbiol2012;12:92DOIPubMed
  35. Hendriksen RSBangtrakulnonth APulsrikarn CPornruangwong SNoppornphan GEmborg HDRisk factors and epidemiology of the ten most common Salmonella serovars from patients in Thailand: 2002–2007. Foodborne Pathog Dis2009;6:100919DOIPubMed
  36. Graham SMNontyphoidal salmonellosis in Africa. Curr Opin Infect Dis2010;23:40914 and. DOIPubMed
  37. Heithoff DMShimp WRHouse JKXie YWeimer BCSinsheimer RLIntraspecies variation in the emergence of hyperinfectious bacterial strains in nature. PLoS Pathog2012;8:e1002647DOIPubMed
  38. Lienau EKStrain EWang CZheng JOttesen ARKeys CEIdentification of a salmonellosis outbreak by means of molecular sequencing. N Engl J Med2011;364:9812DOIPubMed
  39. Orsi RHBorowsky MLLauer PYoung SKNusbaum CGalagan JEShort-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics2008;9:539DOIPubMed
  40. Wilson MRAllard MWBrown EWThe forensic analysis of foodborne bacterial pathogens in the age of whole-genome sequencing. Cladistics.2013;29:44961DOI

Figures

Table

Technical Appendix

Suggested citation for this article: Deng X, Desai PT, den Bakker HC, Mikoleit M, Tolar B, Trees F, et al. Genomic epidemiology of Salmonella entericaserotype Enteritidis based on population structure of prevalent lineages. Emerg Infect Dis [Internet]. 2014 Sep [date cited].http://dx.doi.org/10.3201/eid2009.131095
DOI: 10.3201/eid2009.131095
1These authors contributed equally to this article.

No hay comentarios:

Publicar un comentario