Ahead of Print -Undiagnosed Acute Viral Febrile Illnesses, Sierra Leone - Volume 20, Number 7—July 2014 - Emerging Infectious Disease journal - CDC
Volume 20, Number 7—July 2014
Research
Undiagnosed Acute Viral Febrile Illnesses, Sierra Leone
Author affiliations: US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA (R.J. Schoepp, C.A. Rossi); Kenema Government Hospital, Kenema, Sierra Leone (S.H. Khan, A. Goba); Metabiota, San Francisco, California, USA (J.N. Fair)
Abstract
Sierra Leone in West Africa is in a Lassa fever–hyperendemic region that also includes Guinea and Liberia. Each year, suspected Lassa fever cases result in submission of ≈500–700 samples to the Kenema Government Hospital Lassa Diagnostic Laboratory in eastern Sierra Leone. Generally only 30%–40% of samples tested are positive for Lassa virus (LASV) antigen and/or LASV-specific IgM; thus, 60%–70% of these patients have acute diseases of unknown origin. To investigate what other arthropod-borne and hemorrhagic fever viral diseases might cause serious illness in this region and mimic Lassa fever, we tested patient serum samples that were negative for malaria parasites and LASV. Using IgM-capture ELISAs, we evaluated samples for antibodies to arthropod-borne and other hemorrhagic fever viruses. Approximately 25% of LASV-negative patients had IgM to dengue, West Nile, yellow fever, Rift Valley fever, chikungunya, Ebola, and Marburg viruses but not to Crimean-Congo hemorrhagic fever virus.
The West African country of Sierra Leone is located in a Lassa fever–hyperendemic region that also includes Guinea and Liberia. The causative agent of Lassa fever is Lassa virus (LASV), a member of the Arenaviridae family. Lassa fever is a severe, often fatal, hemorrhagic illness; the virus causes 100,000–300,000 infections and 5,000 deaths each year in the region (1).
Figure
In 2002, Sierra Leone emerged from a brutal 11-year civil war that left the country with little infrastructure and much of its formal economy destroyed. Today Sierra Leone is undergoing substantial economic growth; however, poverty, unemployment, and inadequate health care remain major challenges. Through the Mano River Union–Lassa Fever Network, a variety of organizations are building diagnostic capacity for Lassa fever that will lead to better understanding of the disease and its treatment (2–5). These scientific efforts are centered in eastern Sierra Leone at the Kenema Government Hospital (Kenema, Sierra Leone) within the Lassa fever–hyperendemic region (Figure). The Lassa Fever Ward, a 16-bed facility on the hospital grounds, is dedicated to treating patients suspected of having Lassa fever and is supported by the Lassa Diagnostic Laboratory.
Each year, suspected Lassa fever infections result in submission of ≈500–700 samples to the Kenema Government Hospital Lassa Diagnostic Laboratory (J. Bangura, unpub. data). Samples come from throughout the Lassa fever–hyperendemic region and initially are screened for malaria by thick blood smear and, if negative, are tested for LASV. LASV infection is determined by the presence of virus detected by an antigen-detection ELISA and by the presence of IgM determined by using an IgM-capture ELISA. Generally only 30%–40% of samples tested are positive for LASV antigen and/or LASV-specific IgM; therefore, 60%–70% of patients have acute diseases of unknown origin. We investigated what other arthropod-borne and hemorrhagic fever viral diseases might be causing serious illness in the region and confounding the diagnosis of Lassa fever. We tested samples from these patients using IgM-capture ELISAs to virus pathogens that could occur in the region and mimic Lassa fever. We tested for IgM to dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), Rift Valley fever virus (RVFV), chikungunya virus (CHIKV), Ebola virus (EBOV), Marburg virus (MBGV), and Crimean-Congo hemorrhagic fever virus (CCHFV). Follow up analyses included IgG ELISAs and/or confirmatory plaque-reduction neutralization tests (PRNTs). This study provides a better understanding of the differential diagnoses for Lassa fever in the region, which can lead to improved diagnostic capability and disease treatment.
Dr Schoepp serves as chief of the Applied Diagnostics Department, Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA. His research interests include the pathogenesis and ecology of arthropod-borne and hemorrhagic fever viruses in the human host and the animal and/or arthropod reservoir.
Acknowledgments
We thank all the dedicated and hardworking employees of the Kenema Government Hospital. We extend special thanks to Bayon Bockarie, Mohammed Fullah, James J. Bangura, Ashley M. Zovanyi, Tamara E. Clements, Denise K. Danner, Jim F. Barth, Matthew A. Voorhees, and Eric M. Mucker for their expert technical assistance. We also acknowledge Robert F. Garry for his generosity in sharing the valuable clinical samples analyzed in this study.
The laboratory work was funded in part by the Division of Global Emerging Infections Surveillance and Response System Operations at the Armed Forces Health Surveillance Center, Research Plans (C0169_10_RD, C0410_11_RD, and C0602_12_RD), through USAMRIID and by the US Department of Defense Cooperative Biological Engagement Program, through Metabiota, Inc., San Francisco, CA, USA.
References
- McCormick JB, Webb PA, Krebs JW, Johnson KM, Smith ES. A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis. 1987;155:437–44. DOIPubMed
- Hadi CM, Goba A, Khan SH, Bangura J, Sankoh M, Koroma S, Ribavirin for Lassa fever postexposure prophylaxis. Emerg Infect Dis. 2010;16:2009–11. DOIPubMed
- Branco LM, Boisen ML, Andersen KG, Grove JN, Moses LM, Muncy IJ, Lassa hemorrhagic fever in a late term pregnancy from northern Sierra Leone with a positive maternal outcome: case report. [Erratum in: Virol J. 2011;8:480. ]. Virol J. 2011;8:404. DOIPubMed
- Grove JN, Branco LM, Boisen ML, Muncy IJ, Henderson LA, Schieffellin JS, Capacity building permitting comprehensive monitoring of a severe case of Lassa hemorrhagic fever in Sierra Leone with a positive outcome: case report. Virol J. 2011;8:314–27. DOIPubMed
- Branco LM, Grove JN, Boisen ML, Shaffer JG, Goba A, Fullah M, Emerging trends in Lassa fever: redefining the role of immunoglobulin M and inflammation in diagnosing acute infection. Virol J. 2011;8:478. DOIPubMed
- Sabin AB, Schlesinger RW. Production of immunity to dengue with virus modified by propagation in mice. Science. 1945;101:640–2. DOIPubMed
- Sabin AB. The dengue group of viruses and its family relationships. Bacteriol Rev.1950;14:225–32 .PubMed
- Hammon WM, Rudnick A, Sather GE. Viruses associated with epidemic hemorrhagic fevers of the Philippines and Thailand. Science. 1960;131:1102–3. DOIPubMed
- Melnick JL, Paul JR, Riordan JT, Barnett VH, Goldblum N, Zabin E. Isolation from human sera in Egypt of a virus apparently identical to West Nile virus. Proc Soc Exp Biol Med.1951;77:661–5. DOIPubMed
- Theiler M. The virus. In: Strode K, editor. Yellow fever. New York: McGraw-Hill; 1951. p. 39–136.
- Meegan JM. The Rift Valley fever epizootic in Egypt 1977–78. 1. Description of the epizzotic and virological studies. Trans R Soc Trop Med Hyg. 1979;73:618–23. DOIPubMed
- Ksiazek TG, Rollin PE, Williams AJ, Bressler DS, Martin ML, Swanepoel R, Clinical virology of Ebola hemorrhagic fever (EHF): virus, virus antigen, and IgG and IgM antibody findings among EHF patients in Kikwit, Democratic Republic of the Congo, 1995. J Infect Dis. 1999;179(Suppl 1):S177–87. DOIPubMed
- Smith DH, Johnson BK, Isaacson M, Swanapoel R, Johnson KM, Killey M, Marburg-virus disease in Kenya. Lancet. 1982;1:816–20. DOIPubMed
- Causey OR, Kemp GE, Madbouly MH, David-West TS. Congo virus from domestic livestock, African hedgehog, and arthropods in Nigeria. Am J Trop Med Hyg.1970;19:846–50 .PubMed
- Auperin DD, Sasso DR, McCormick JB. Nucleotide sequence of the glycoprotein gene and intergenic region of the Lassa virus S genome RNA. Virology. 1986;154:155–67. DOIPubMed
- Chu YK, Rossi C, LeDuc JW, Lee HW, Schmaljohn CS, Dalrymple JM. Serological relationships among viruses in the Hantavirus genus, family Bunyaviridae. Virology.1994;198:196–204. DOIPubMed
- Duermeyer W, Wielaard F, van der Veen J. A new principle for the detection of specific IgM antibodies applied in an ELISA for hepatitis A. J Med Virol. 1979;4:25–32. DOIPubMed
- Meegan JM, Yedloutschnig RJ, Peleg BA, Shy J, Peters CJ, Walker JS, Enzyme-linked immunosorbent assay for detection of antibodies to Rift Valley fever virus in ovine and bovine sera. Am J Vet Res. 1987;48:1138–41 .PubMed
- Rossi CA, Drabick JJ, Gambel JM, Sun W, Lewis TE, Henchal EA. Laboratory diagnosis of acute dengue fever during the United Nations mission in Haiti, 1995–1996. Am J Trop Med Hyg. 1998;59:275–8 .PubMed
- Burke DS, Ramsburg HH, Edelman R. Persistence in humans of antibody to subtypes of Venezuelan equine encephalomyelitis (VEE) virus after immunization with attenuated (TC-83) VEE virus vaccine. J Infect Dis. 1977;136:354–9. DOIPubMed
- Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States.Science. 1999;286:2333–7. DOIPubMed
- Beaty BJ, Calisher CH, Shope RE. Arboviruses. In: Lennette EH, Lennette DA, Lennette ET, editors. Diagnostic procedures for viral, rickettsial, and chlamydial infections. Washington (DC): American Public Health Association; 1995. p. 189–212.
- Jentes ES, Robinson J, Johnson BW, Conde I, Sakouvougui Y, Iverson J, Acute arboviral infections in Guinea, West Africa, 2006. [Erratum in: Am J Trop Med Hyg. 2010;83:1174. ]. Am J Trop Med Hyg. 2010;83:388–94. DOIPubMed
- McCormick JB, King IJ, Webb PA, Johnson KM, O’Sullivan R, Smith ES, A case-control study of the clinical diagnosis and course of Lassa fever. J Infect Dis. 1987;155:445–55. DOIPubMed
- Powers AM, Brault AC, Tesh RB, Weaver SC. Re-emergence of chikungunya and o’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000;81:471–9 .PubMed
- Towner JS, Sealy TK, Khristova ML, Albarino CG, Conlan S, Reeder SA, Newly discovered ebola virus associated with hemorrhagic fever outbreak in Uganda. PLoS Pathog.2008;4:e1000212. DOIPubMed
- Tomori O, Fabiyi A. Antibodies against arboviruses in Sierra Leone. Trop Geogr Med.1976;28:239–43 .PubMed
- Woodruff AW, Bowen ET, Platt GS. Viral infections in travellers from tropical Africa. BMJ.1978;1:956–8 and. DOIPubMed
- World Health Organization. Global health partners mobilize to counter yellow fever. Geneva: The Organization; 2007.
- Thonnon J, Fontenille D, Tall A, Diallo M, Renaudineau Y, Baudez B, Re-emergence of yellow fever in Senegal in 1995. Am J Trop Med Hyg. 1998;59:108–14 .PubMed
- Posey DL, O'Rourke T, Roehrig JT, Lanciotti RS, Weinberg M, Maloney S. O’nyong-nyong fever in West Africa. Am J Trop Med Hyg. 2005;73:32 .PubMed
- Favier C, Chalvet-Monfray K, Sabatier P, Lancelot R, Fontenille D, Dubois MA. Rift Valley fever in West Africa: the role of space in endemicity. Trop Med Int Health.2006;11:1878–88. DOIPubMed
- Fontenille D, Traore-Lamizana M, Diallo M, Thonnon J, Digoutte JP, Zeller HG. New vectors of Rift Valley fever in West Africa. Emerg Infect Dis. 1998;4:289–93. DOIPubMed
- Faye O, Diallo M, Diop D, Bezeid OE, Ba H, Niang M, Rift Valley fever outbreak with east-central African virus lineage in Mauritania, 2003. Emerg Infect Dis. 2007;13:1016–23. DOIPubMed
- Gonzalez JP, LeGuenno B, Guillaud M, Wilson ML. A fatal case of Crimean-Congo haemorrhagic fever in Mauritania: virological and serological evidence suggesting epidemic transmission. Trans R Soc Trop Med Hyg. 1990;84:573–6. DOIPubMed
- Le Guenno B, Formenty P, Wyers M, Gounon P, Walker F, Boesch C. Isolation and partial characterisation of a new strain of Ebola virus. [Erratum in: Lancet. 2006;367:816. ].Lancet. 1995;345:1271–4. DOIPubMed
Figure
Tables
- Table 1. Case definition used to detect suspected Lassa fever at Kenema Government Hospital, Kenema, Sierra Leone, October 2006–October 2008
- Table 2. Patients’ antibody reactions to arthropod-borne and hemorrhagic fever virus antigens, Lassa Diagnostic Laboratory, Kenema, Sierra Leone, October 2006–October 2008
- Table 3. Results of Immunologic assays for serum samples that tested IgM positive only for alphaviruses, Lassa Diagnostic Laboratory, Kenema, Sierra Leone, October 2006–October 2008
- Table 4. Results of immunologic assays for serum samples testing IgM positive only for ebolaviruses, Lassa Diagnostic Laboratory, Kenema, Sierra Leone, October 2006–October 2008
Suggested citation for this article: Schoepp RJ, Rossi CA, Khan SH, Goba A, Fair JN. Undiagnosed acute viral febrile illnesses, Sierra Leone. Emerg Infect Dis [Internet]. 2014 Jul [date cited].http://dx.doi.org/10.3201/eid2007.131265
DOI: 10.3201/eid2007.131265
No hay comentarios:
Publicar un comentario