Undergraduate biomedical engineering teams win NIH competition
Winners awarded for diagnostics, therapeutics, and technologies for underserved populations
The judging was based on four criteria: the significance of the problem being addressed; the impact on clinical care; the innovation of the design; and the existence of a working prototype. Each winning team will receive a $10,000 prize to be shared among the team members and will be honored at an award ceremony during the September 2013 annual meeting of the Biomedical Engineering Society (BMES) in Seattle.
“We are excited to see the next generation of scientists focusing on precision medicine,” said NIBIB’s Zeynep Erim, Ph.D., who manages the DEBUT competition. “This device could potentially help doctors determine the type of drug and dosages for a specific patient without the need to wait and see how the patient responds to treatment, saving valuable time and sparing the patient from the side effects of a drug that may prove ineffective in the end.”
The winning team in the category of therapeutic devices was submitted by Alison Stace-Naughton, Pauline Schmit, Laura Taylor Gray, and Jen Freise from Dartmouth College, Hanover, N.H. They created an innovative Microflora Refinement System to help treat Clostridium difficile (C. diff), an infectious intestinal bacterium. C. diff is the number one cause of hospital-acquired diarrhea and can be highly drug resistant, virulent and deadly. The current treatment for this kind of infection is antibiotics, but they are often ineffective. Recently, fecal microbiota transplantation has been proposed as an effective alternative, but the treatment has not gained popularity due to the “ick” factor that comes from having to process the donor feces that is used to repopulate the gut microflora in the infected patient. The Microflora Refinement System designed by this team automates the process of separating the beneficial microbiota from the fecal matter and could potentially make transplantation more widely available. This project shows great promise in that it removes barriers for the acceptance of an otherwise effective treatment that has been underutilized due to factors that have nothing to do with medicine.
“The simple design of this device gives it the potential to have a widespread effect,” said Dr. Erim. “The ability to look at a problem in healthcare and create an inexpensive and viable solution for worldwide distribution is the type of thinking we want to encourage with this program.”
There were 31 eligible entries received from 19 universities in 14 different states with a total of 136 students contributing to the projects. By holding a design competition open only to undergraduate students, NIBIB intended to encourage the students to compete to solve global problems.
“Undergraduates like those who participated in this competition are the future of biomedical research,” said NIBIB Director Roderic I. Pettigrew, Ph.D., M.D. “Hopefully this program will challenge students early in their education to think about solving real world problems in healthcare and to consider a career in the biomedical sciences.”
Complete project descriptions from the winning student teams along with a list of honorable mentions can be found at: http://www.nibib.nih.gov/training-careers/undergraduate-graduate/design-biomedical-undergraduate-teams-debut-challenge/2013-design-biomedical-undergraduate-teams-debut-challenge-winners#
NIBIB’s mission is to support multidisciplinary research and research training at the crossroads of engineering and the biological and physical sciences. NIBIB supports emerging technology research and development within its internal laboratories and through grants, collaborations, and training. More information is available at the NIBIB website: http://www.nibib.nih.gov.
About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.
NIH...Turning Discovery Into Health®
No hay comentarios:
Publicar un comentario