sábado, 29 de junio de 2019

Langerhans Cell Histiocytosis Treatment (PDQ®) 6/7 —Health Professional Version - National Cancer Institute

Langerhans Cell Histiocytosis Treatment (PDQ®)—Health Professional Version - National Cancer Institute

National Cancer Institute

Langerhans Cell Histiocytosis Treatment (PDQ®)–Health Professional Version



Adult LCH

The natural history of disease in adult Langerhans cell histiocytosis (LCH), with the exception of pulmonary LCH, is unknown. It is unclear whether there are significant differences from childhood LCH, although it appears that multisystem high-risk LCH is less aggressive than childhood high-risk disease. The risk of reactivations is unknown, but may be higher than in pediatric LCH patients. A reactivation rate of 62.5% has been reported in adults, compared with 36.8% in pediatric patients.[1]. Sixty-four percent of adults with diabetes insipidus monitored for an average of 6 years developed other endocrine problems.[2,3]
A consensus group reported on the evaluation and treatment of adult patients with LCH.[4] However, discussion continues, particularly regarding optimal first-line therapy.

Incidence

It is estimated that one to two adult cases of LCH occur per 1 million population.[5] The true incidence of this disease is not known, however, because most published studies are not population based, and the disorder is likely to be underdiagnosed. A survey from Germany reported that 66% of the patients with LCH were women, with an average age of 43.5 years for all patients.[6]
More than 90% of adult pulmonary LCH cases occur in young adults who smoke, often more than 20 cigarettes per day.[7,8]

Clinical Presentation

Adult patients may have signs and symptoms of LCH for many months before receiving a definitive diagnosis and treatment. LCH in adults is often similar to that in children and appears to involve the same organs, although the incidence in an organ may be different. There is a predominance of lung disease in adults, usually occurring as single-system disease and closely associated with smoking and some unique biologic characteristics. Most adult isolated lung LCH cases are polyclonal and possibly reactive, while fewer lung LCH cases are monoclonal.[9,10]
A German registry with 121 registrants showed that 62% had single-organ involvement and 38% had multisystem involvement, while 34% of the total had lung involvement. The median age at diagnosis was 44 years ± 12.8 years. The most common organ involved was lung, followed by bone and skin. All organ systems found in childhood LCH were seen, including endocrine and central nervous system, liver, spleen, bone marrow, and gastrointestinal tract. The major difference is the much higher incidence of isolated pulmonary LCH in adults, particularly in young adults who smoke. Other differences appear to be the more frequent involvement of genital and oral mucosa. There may possibly be a difference in the distribution of bone lesions, but both groups suffer reactivations of bone lesions and progression to diabetes insipidus, although the exact incidence in adults is unknown.[5]
Presenting symptoms from published studies are (in order of decreasing frequency) dyspnea or tachypnea, polydipsia and polyuria, bone pain, lymphadenopathy, weight loss, fever, gingival hypertrophy, ataxia, and memory problems. The signs of LCH are skin rash, scalp nodules, soft tissue swelling near bone lesions, lymphadenopathy, gingival hypertrophy, and hepatosplenomegaly. Patients who present with isolated diabetes insipidus should be carefully observed for the onset of other symptoms or signs characteristic of LCH. At least 80% of patients with diabetes insipidus had involvement of other organ systems, including bone (68%), skin (57%), lung (39%), and lymph nodes (18%).[11] However, isolated diabetes insipidus in adults is similar to that in pediatric patients, with progression from posterior to anterior pituitary/hypothalamus and to cerebellar involvement (refer to the Endocrine system subsection in the Childhood LCH section of this summary for more information ).

Skin and oral cavity

Thirty-seven percent of adults with LCH have skin involvement, usually as part of multisystem disease. Skin-only LCH occurs but it is less common in adults than in children. The prognosis for adults with skin-only LCH is excellent, with 100% probability of 5-year survival. The cutaneous involvement is clinically similar to that seen in children and may take many forms.[12] Infra-mammary and vulvar involvement may be seen in adult women with skin LCH.
Many patients have a papular rash with brown, red, or crusted areas ranging from the size of a pinhead to a dime. In the scalp, the rash is similar to that of seborrhea. Skin in the inguinal region, genitalia, or around the anus may have open ulcers that do not heal after antibacterial or antifungal therapy. The lesions are usually asymptomatic but may be pruritic or painful. In the mouth, swollen gums or ulcers along the cheeks, roof of the mouth, or tongue may be signs of LCH.
Diagnosis of LCH is usually made by skin biopsy performed for persistent skin lesions.[12]

Bones

The relative frequency of bone involvement in adults differs from that in children; the frequency of mandible involvement is 30% in adults and 7% in children, and the frequency of skull involvement is 21% in adults and 40% in children.[5,6,11,13] The frequency of vertebrae (13%), pelvis (13%), extremities (17%), and rib (6%) lesions in adults are similar to those found in children.[5]

Lung

Pulmonary LCH in adults is usually single-system disease, but in some patients, other organs may be involved, including bone (18%), skin (13%), and diabetes insipidus (5%).[14]
Pulmonary LCH is more prevalent in smokers than in nonsmokers, and the male-to-female ratio is nearly 1:1, depending on the incidence of smoking in the population studied.[14,15] Patients with pulmonary LCH usually present with a dry cough, dyspnea, or chest pain, although nearly 20% of adults with lung involvement have no symptoms.[16,17] Chest pain may indicate a spontaneous pneumothorax (10%–20% of adult pulmonary LCH cases).
Pulmonary LCH can be diagnosed by bronchoscopy in about 50% of adult patients, as defined by characteristic CD1a immunostaining cells of at least 5% of cells observed.[18] High-resolution lung computed tomography (CT) shows characteristic changes with cysts and nodules, more prevalent at the mid and upper zones. These changes have been characterized as pathognomonic for lung LCH.[16]
The LCH cells in adult lung lesions were shown to be mature dendritic cells expressing high levels of the accessory molecules CD80 and CD86, unlike Langerhans cells (LCs) found in other lung disorders.[17] Pulmonary LCH in adults has been considered a primarily reactive process, rather than a clonal proliferation as seen in childhood LCH.[9] However, ERK pathway mutations have been demonstrated in up to two-thirds of pulmonary LCH lesions in adults, suggesting a clonal process in a significant proportion of patients.[10,19]
The course of pulmonary LCH in adults is variable and unpredictable.[14]
Favorable prognostic factors for adult LCH of the lung include the following:
  • Minimal symptoms. Adults with pulmonary LCH who have minimal symptoms have a good prognosis, although some have steady deterioration over many years.[8]
  • Smoking cessation or treatment. Fifty-nine percent of patients do well with either spontaneous remission with cessation of smoking, or with some form of therapy.[8] However, one study reported that smoking cessation did not increase the longevity of adults with pulmonary LCH, apparently because the tempo of disease is so variable.[20]
  • Lung transplantation. Patients receiving lung transplantation for treatment of pulmonary LCH have a 77% survival rate at 1 year and a 54% survival rate at 10 years, with a 20% chance of LCH recurrence.[21]
Unfavorable prognostic factors for adult LCH of the lung include the following:
  • Altered pulmonary function. Lower forced expiratory volume/forced vital capacity (FEV1/FVC) ratio and higher residual volume/total lung capacity (RV/TLC) ratio are adverse prognostic variables.[20] About 10% to 20% of patients have early severe progression to respiratory failure, severe pulmonary hypertension, and cor pulmonale. Adults who have progression with diffuse bullae formation, multiple pneumothoraces, and fibrosis have a poor prognosis.[22,23]
  • Age. Age older than 26 years is an adverse prognostic variable.[20]
The remaining patients have a variable course, with stable disease in some patients and relapses and progression of respiratory dysfunction in others, some after many years.[24] A natural history study of 58 LCH patients with pulmonary involvement found that 38% of patients had deterioration of lung function after 2 years.[25] The most significant adverse prognostic variables were positive smoking statuses and low PaO2 levels at the time of inclusion.
The following results may be noted on diagnostic tests:
  • Pulmonary function testing. The most frequent pulmonary function abnormality finding in patients with pulmonary LCH is a reduced carbon monoxide diffusing capacity in 70% to 90% of cases.[20,26]
  • CT scan. A high-resolution CT scan, which reveals a reticulonodular pattern classically with cysts and nodules, usually in the upper lobes and sparing the costophrenic angle, is characteristic of LCH. [27] The presence of cystic abnormalities on high-resolution CT scans appears to be a poor predictor of which patients will have progressive disease.[28]
  • Biopsy. Despite the typical CT findings, most pulmonologists agree that a lung biopsy is needed to confirm the diagnosis. A study that correlated lung CT findings and lung biopsy results in 27 patients with pulmonary LCH observed that thin-walled and bizarre cysts had active LCs and eosinophils.[29]

Liver

Liver involvement was reported in 27% of adult patients with LCH and multiorgan disease.[30] Hepatomegaly (48%) and liver enzyme abnormalities (61%) were present. CT and ultrasound imaging abnormalities are often found.
The early histopathologic stage of liver LCH includes infiltration of CD1a-positive cells and periductal fibrosis with inflammatory infiltrates with or without steatosis. The late stage is biliary tree sclerosis; treatment with ursodeoxycholic acid is suggested.[30]

Multisystem disease

In a large series of patients from the Mayo Clinic, 31% had multisystem LCH compared with 69% registered on the Histiocyte Society adult registry; this likely reflects referral bias.[12,31] In the adult multisystem patients, the sites of disease included the following:
  • Skin (50%).
  • Mucocutaneous (40%).
  • Diabetes insipidus (29.6%).
  • Hepatosplenomegaly (16%).
  • Hypothyroidism (6.6%).
  • Lymphadenopathy (6%).
References
  1. Maia RC, de Rezende LM, Robaina M, et al.: Langerhans cell histiocytosis: differences and similarities in long-term outcome of paediatric and adult patients at a single institutional centre. Hematology 20 (2): 83-92, 2015. [PUBMED Abstract]
  2. Malpas JS, Norton AJ: Langerhans cell histiocytosis in the adult. Med Pediatr Oncol 27 (6): 540-6, 1996. [PUBMED Abstract]
  3. Di Iorgi N, Allegri AE, Napoli F, et al.: Central diabetes insipidus in children and young adults: etiological diagnosis and long-term outcome of idiopathic cases. J Clin Endocrinol Metab 99 (4): 1264-72, 2014. [PUBMED Abstract]
  4. Girschikofsky M, Arico M, Castillo D, et al.: Management of adult patients with Langerhans cell histiocytosis: recommendations from an expert panel on behalf of Euro-Histio-Net. Orphanet J Rare Dis 8: 72, 2013. [PUBMED Abstract]
  5. Baumgartner I, von Hochstetter A, Baumert B, et al.: Langerhans'-cell histiocytosis in adults. Med Pediatr Oncol 28 (1): 9-14, 1997. [PUBMED Abstract]
  6. Götz G, Fichter J: Langerhans'-cell histiocytosis in 58 adults. Eur J Med Res 9 (11): 510-4, 2004. [PUBMED Abstract]
  7. Tazi A, Soler P, Hance AJ: Adult pulmonary Langerhans' cell histiocytosis. Thorax 55 (5): 405-16, 2000. [PUBMED Abstract]
  8. Vassallo R, Ryu JH, Colby TV, et al.: Pulmonary Langerhans'-cell histiocytosis. N Engl J Med 342 (26): 1969-78, 2000. [PUBMED Abstract]
  9. Yousem SA, Colby TV, Chen YY, et al.: Pulmonary Langerhans' cell histiocytosis: molecular analysis of clonality. Am J Surg Pathol 25 (5): 630-6, 2001. [PUBMED Abstract]
  10. Roden AC, Hu X, Kip S, et al.: BRAF V600E expression in Langerhans cell histiocytosis: clinical and immunohistochemical study on 25 pulmonary and 54 extrapulmonary cases. Am J Surg Pathol 38 (4): 548-51, 2014. [PUBMED Abstract]
  11. Kaltsas GA, Powles TB, Evanson J, et al.: Hypothalamo-pituitary abnormalities in adult patients with langerhans cell histiocytosis: clinical, endocrinological, and radiological features and response to treatment. J Clin Endocrinol Metab 85 (4): 1370-6, 2000. [PUBMED Abstract]
  12. Aricò M, Girschikofsky M, Généreau T, et al.: Langerhans cell histiocytosis in adults. Report from the International Registry of the Histiocyte Society. Eur J Cancer 39 (16): 2341-8, 2003. [PUBMED Abstract]
  13. Slater JM, Swarm OJ: Eosinophilic granuloma of bone. Med Pediatr Oncol 8 (2): 151-64, 1980. [PUBMED Abstract]
  14. Vassallo R, Ryu JH, Schroeder DR, et al.: Clinical outcomes of pulmonary Langerhans'-cell histiocytosis in adults. N Engl J Med 346 (7): 484-90, 2002. [PUBMED Abstract]
  15. Schönfeld N, Frank W, Wenig S, et al.: Clinical and radiologic features, lung function and therapeutic results in pulmonary histiocytosis X. Respiration 60 (1): 38-44, 1993. [PUBMED Abstract]
  16. Travis WD, Borok Z, Roum JH, et al.: Pulmonary Langerhans cell granulomatosis (histiocytosis X). A clinicopathologic study of 48 cases. Am J Surg Pathol 17 (10): 971-86, 1993. [PUBMED Abstract]
  17. Tazi A, Moreau J, Bergeron A, et al.: Evidence that Langerhans cells in adult pulmonary Langerhans cell histiocytosis are mature dendritic cells: importance of the cytokine microenvironment. J Immunol 163 (6): 3511-5, 1999. [PUBMED Abstract]
  18. Baqir M, Vassallo R, Maldonado F, et al.: Utility of bronchoscopy in pulmonary Langerhans cell histiocytosis. J Bronchology Interv Pulmonol 20 (4): 309-12, 2013. [PUBMED Abstract]
  19. Kamionek M, Ahmadi Moghaddam P, Sakhdari A, et al.: Mutually exclusive extracellular signal-regulated kinase pathway mutations are present in different stages of multi-focal pulmonary Langerhans cell histiocytosis supporting clonal nature of the disease. Histopathology 69 (3): 499-509, 2016. [PUBMED Abstract]
  20. Delobbe A, Durieu J, Duhamel A, et al.: Determinants of survival in pulmonary Langerhans' cell granulomatosis (histiocytosis X). Groupe d'Etude en Pathologie Interstitielle de la Société de Pathologie Thoracique du Nord. Eur Respir J 9 (10): 2002-6, 1996. [PUBMED Abstract]
  21. Dauriat G, Mal H, Thabut G, et al.: Lung transplantation for pulmonary langerhans' cell histiocytosis: a multicenter analysis. Transplantation 81 (5): 746-50, 2006. [PUBMED Abstract]
  22. Chaulagain CP: Pulmonary langerhans' cell histiocytosis. Am J Med 122 (11): e5-6, 2009. [PUBMED Abstract]
  23. Lin MW, Chang YL, Lee YC, et al.: Pulmonary Langerhans cell histiocytosis. Lung 187 (4): 261-2, 2009. [PUBMED Abstract]
  24. Tazi A, Hiltermann J, Vassallo R: Adult lung histiocytosis. In: Weitzman S, Egeler R M, eds.: Histiocytic Disorders of Children and Adults. Cambridge, United Kingdom: Cambridge University Press, 2005, pp 187-207.
  25. Tazi A, de Margerie C, Naccache JM, et al.: The natural history of adult pulmonary Langerhans cell histiocytosis: a prospective multicentre study. Orphanet J Rare Dis 10: 30, 2015. [PUBMED Abstract]
  26. Crausman RS, Jennings CA, Tuder RM, et al.: Pulmonary histiocytosis X: pulmonary function and exercise pathophysiology. Am J Respir Crit Care Med 153 (1): 426-35, 1996. [PUBMED Abstract]
  27. Diette GB, Scatarige JC, Haponik EF, et al.: Do high-resolution CT findings of usual interstitial pneumonitis obviate lung biopsy? Views of pulmonologists. Respiration 72 (2): 134-41, 2005 Mar-Apr. [PUBMED Abstract]
  28. Soler P, Bergeron A, Kambouchner M, et al.: Is high-resolution computed tomography a reliable tool to predict the histopathological activity of pulmonary Langerhans cell histiocytosis? Am J Respir Crit Care Med 162 (1): 264-70, 2000. [PUBMED Abstract]
  29. Kim HJ, Lee KS, Johkoh T, et al.: Pulmonary Langerhans cell histiocytosis in adults: high-resolution CT-pathology comparisons and evolutional changes at CT. Eur Radiol 21 (7): 1406-15, 2011. [PUBMED Abstract]
  30. Abdallah M, Généreau T, Donadieu J, et al.: Langerhans' cell histiocytosis of the liver in adults. Clin Res Hepatol Gastroenterol 35 (6-7): 475-81, 2011. [PUBMED Abstract]
  31. Howarth DM, Gilchrist GS, Mullan BP, et al.: Langerhans cell histiocytosis: diagnosis, natural history, management, and outcome. Cancer 85 (10): 2278-90, 1999. [PUBMED Abstract]

No hay comentarios:

Publicar un comentario