jueves, 14 de marzo de 2019

Impact of regular magnetic resonance imaging follow-up after stereotactic radiotherapy to the surgical cavity in patients with one to three brain metastases | Radiation Oncology | Full Text

Impact of regular magnetic resonance imaging follow-up after stereotactic radiotherapy to the surgical cavity in patients with one to three brain metastases | Radiation Oncology | Full Text



Radiation Oncology

Impact of regular magnetic resonance imaging follow-up after stereotactic radiotherapy to the surgical cavity in patients with one to three brain metastases

Radiation Oncology201914:45
  • Received: 21 November 2018
  • Accepted: 5 March 2019
  • Published: 

Abstract

Background

Administering stereotactic radiotherapy to the surgical cavity and thus omitting postoperative whole brain radiotherapy (WBRT) is a favored strategy in limited metastatic brain disease. Little is known about the impact of regular magnetic resonance imaging follow-up (MRI FU) in such patient cohorts. The aim of this study is to examine the impact of regular MRI FU and to report the oncological outcomes of patients with one to three brain metastases (BMs) treated with stereotactic radiosurgery (SRS) or hypo-fractionated stereotactic radiotherapy (HFSRT) to the surgical cavity.

Methods

We retrospectively analyzed patients who received SRS or HFSRT to the surgical cavity after resection of one to two BMs. Additional, non-resected BMs were managed with SRS alone. Survival was estimated by the Kaplan-Meier method. Prognostic factors were examined with the log-rank test and Cox proportional hazards model. Regular MRI FU was defined as performing a brain MRI 3 months after radiotherapy (RT) and/or performing ≥1 brain MRI per 180 days. Primary endpoint was local control (LC). Secondary endpoints were distant brain control (DBC), overall survival (OS) and the correlation between regular MRI FU and overall survival (OS), symptom-free survival (SFS), deferment of WBRT and WBRT-free survival (WFS).

Results

Overall, 75 patients were enrolled. One, 2 and 3 BMs were seen in 63 (84%), 11 (15%) and 1 (1%) patients, respectively. Forty (53%) patients underwent MRI FU 3 months after RT and 38 (51%) patients received ≥1 brain MRI per 180 days. Median OS was 19.4 months (95% CI: 13.2–25.6 months). Actuarial LC, DBC and OS at 1 year were 72% (95% CI: 60–83%), 60% (95% CI: 48–72%) and 66% (95% CI: 53–76%), respectively. A planning target volume > 15 cm3 (p = 0.01), Graded Prognostic Assessment (GPA) score (p = 0.001) and residual tumor after surgery (p = 0.008) were prognostic for decreased OS in multivariate analysis. No significant correlation between MRI FU at 3 months and OS (p = 0.462), SFS (p = 0.536), WFS (p = 0.407) or deferment of WBRT (p = 0.955) was seen. Likewise, performing ≥1 MRI per 180 days had no significant impact on OS (p = 0.954), SFS (p = 0.196), WFS (p = 0.308) or deferment of WBRT (p = 0.268).

Conclusion

Our results regarding oncological outcomes consist with the current data from the literature. Surprisingly, regular MRI FU did not result in increased OS, SFS, WFS or deferment of WBRT in our cohort consisting mainly of patients with a single and resected BM. Therefore, the impact of regular MRI FU needs prospective evaluation.

Trial registration

Project ID: 2017–00033, retrospectively registered.

Keywords

  • Brain metastases
  • Surgical cavity
  • Tumor bed
  • Magnetic resonance imaging
  • MRI
  • Radiosurgery
  • Stereotactic radiotherapy
  • Follow-up
  • Surveillance
  • Monitoring

No hay comentarios:

Publicar un comentario